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B Motivation and Introduction
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What are we talking about? Tm

B This talk:

B (Later) with p > 2 random variables present.

B (Later) with X;, 7 € [p] being random vectors (or groups) rather than scalar random
variables.
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Identifiability Tm

B Without any further assumptions, direction of the edge can’t be inferred from
observations from X; and X5, even in the infinite data limit [Spirtes et al., 1993].
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B Without any further assumptions, direction of the edge can’t be inferred from
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B Performing an intervention in this setting will allow us to orient the edge [Pearl, 2009].

B However, interventions might be costly, unethical, or infeasible in practice.
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Identifiability TUTI

B Without any further assumptions, direction of the edge can’t be inferred from
observations from X; and X5, even in the infinite data limit [Spirtes et al., 1993].

B Performing an intervention in this setting will allow us to orient the edge [Pearl, 2009].
B However, interventions might be costly, unethical, or infeasible in practice.

B Certain model classes, it turns out, allow us to orient the causal edge, without
interventional data.
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Outline

DAGs and SEMs
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Structural equation models

A structural equation model (SEM) [Bollen, 1989] is a tuple (S, P(N)), where
S = (S1,...,5p) is a collection of p equations

Skt Xk = [e(Xpar), Nk), k€ [pl,

and P(N) = P(Ny,...,N,) is the joint product distribution of exogenous noise terms.
X1 = fl(Nl) @
Xo = fo(X1, Na)
X3 = f3(X2, N3) @ @
(

X4 = f4 Xl,Xg,N4), @

Ny, ..., Ny jointly independent
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Outline

Identifiability
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Identifiability

B Let us make the notion of identifiability more precise.
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Identifiability Tm
B Let us make the notion of identifiability more precise.

B Consider the following SEM over two (not necessarily scalar) random variables X; and

X,
X1 =N, Xo= fo(X1,Ng),

with N1 1L N5 and the following DAG
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Identifiability TUTI

B Let us make the notion of identifiability more precise.

B Consider the following SEM over two (not necessarily scalar) random variables X; and
Xo,
X1 =N, Xy = fa(Xy1,No),

with N1 1L N5 and the following DAG

B We know of course that the DAG with the edge reversed lives in the same Markov
equivalence class.
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B Consider the following SEM

X2 = f(Xl,Ng), with X1 A NQ.

Konstantin Gébler | Nonlinear Causal Discovery for Grouped Data | October 29, 2025



B Consider the following SEM
X2 = f(Xl,Ng), with X1 A NQ.
B Clearly, if the reversed causal direction were valid, one could write

X1 :f(XQ,Nl), with X2 JLNl

with f, f € F some general functional class.
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B Consider the following SEM TI.ITI
X2 = f(Xl,Ng), with X1 A NQ.
B Clearly, if the reversed causal direction were valid, one could write

X1 :f(XQ,Nl), with X2 JLNl

with f, f € F some general functional class.

B It turns out, without restrictions on the functional class F, Hyvarinen and Pajunen [1999]
show that there always exists a suitable function f € F ensuring Xo 1L Nj.
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B Consider the following SEM TI.ITI
X2 = f(Xl,Ng), with X1 A NQ.
B Clearly, if the reversed causal direction were valid, one could write

X1 :f(XQ,Nl), with X2 JLNl

with f, f € F some general functional class.

B It turns out, without restrictions on the functional class F, Hyvarinen and Pajunen [1999]
show that there always exists a suitable function f € F ensuring Xo 1L Nj.

B The absence of constraints on F renders the SEM symmetric with respect to variables
X1 and X2.
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Identifiability TUTI

B Let’s depict the joint distributions that may be generated from the causal SEM (C) and
the anticausal SEM (A) inside the set of all possible joint distributions P.

P
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Identifiability TUTI

B Let’s depict the joint distributions that may be generated from the causal SEM (C) and
the anticausal SEM (A) inside the set of all possible joint distributions P.

P

H Identifiability: Size of the intersection C' N A. If C' and A were to contain almost the same
set of joint distributions, we would regard the model class as non-identifiable.

B Conversely, if the intersection is very small, we would regard the model class as
identifiable.
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One specific restriction on F

B Let’s motivate one model class that enables us to orient the edge.

1= ()

Xo = fo(X1) + N2
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One specific restriction on F

B Let’s motivate one model class that enables us to orient the edge.

1= ()

Xo = fo(X1) + N2

B where f, is assumed to be a three-times differentiable nonlinear function.

Konstantin Gébler | Nonlinear Causal Discovery for Grouped Data | October 29, 2025



One specific restriction on F

B Let’s motivate one model class that enables us to orient the edge.

1= ()

Xo = fo(X1) + N2

B where f, is assumed to be a three-times differentiable nonlinear function.

Why is this model class identiable?
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One specific restriction on F
B Let’s motivate one model class that enables us to orient the edge.

1 ()

Xo = fo(X1) + N2

B where f, is assumed to be a three-times differentiable nonlinear function.
Why is this model class identiable?

B Fact: E[ X, | X;] “best” predicts X5 as a function of X;.
B By construction:

COI’I’(XQ — E[XQ | Xl],Xl) = COI’I’(Xl — E[Xl | Xg],XQ) =0
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Nonlinear Additive noise models (ANMs)

B Let’s motivate the model class that enables us to orient the edge below.

1= ()

Xo = fo(X1) + N2
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Nonlinear Additive noise models (ANMs) TUTI

B Let’s motivate the model class that enables us to orient the edge below.

1 ()

Xy = fo(X1) + N2
B Regression the right way around: Xy — E[X; | X1] = X2 — f2(X1) = No, then

Ny I X4

Konstantin Gébler | Nonlinear Causal Discovery for Grouped Data | October 29, 2025 10



Nonlinear Additive noise models (ANMs)

B Let’s motivate the model class that enables us to orient the edge below.

1= ()

Xy = fo(X1) + N2
B Regression the right way around: Xy — E[X; | X1] = X2 — f2(X1) = No, then

Ny I X4

B Regression the wrong way around: for some general nonlinear fs, it holds that

X1 —E[X; | Xo] L X2, (butuncorrelated).
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ANM: X, = Nl,XQ = eXp(Xl) + Noand N; ~ N(O, 1),2 =1,2
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Comparing forward and backward model
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Non-intentifiable: f,(z) = a*z+band N; ~ N(0,1),i = 1,2 TUTI
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Exact condition for non-identifiability

B It turns out that we can characterize the intersection C'N A exactly.
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Exact condition for non-identifiability Tm

B It turns out that we can characterize the intersection C'N A exactly.

B First shown by Hoyer et al. [2008], a bivariate SEM is identifiable if the triple
(fj, P(X;), P(Nj;)) for i, j € {1,2} does not solve the following differential equation

mo_ en me/ f” " en w V"V V/(f//)2
£ =¢ <_ N f/) 2fo+ f + ! o 7

Where f = f]s € = lngXi, V= logpNj'
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Exact condition for non-identifiability Tm

B It turns out that we can characterize the intersection C'N A exactly.

B First shown by Hoyer et al. [2008], a bivariate SEM is identifiable if the triple
(fj, P(X;), P(Nj;)) for i, j € {1,2} does not solve the following differential equation

mo_ en me/ f” " en w V"V V/(f//)2
£ =¢ <_ N f/) 2fo+ f + ! o 7

where f = f;, £ == logpx,, v == logpn;.
B The differential equation for £ has a 3-dimensional space of solutions, while a priori, the
space of all possible log-marginals is infinite dimensional.
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Exact condition for non-identifiability Tm

B It turns out that we can characterize the intersection C'N A exactly.

B First shown by Hoyer et al. [2008], a bivariate SEM is identifiable if the triple
(fj, P(X;), P(Nj;)) for i, j € {1,2} does not solve the following differential equation

mo_ en me/ f” " en w V"V V/(f//)2
£ =¢ <_ N f/) 2fo+ f + ! o 7

where f = f;, £ == logpx,, v == logpn;.
B The differential equation for £ has a 3-dimensional space of solutions, while a priori, the
space of all possible log-marginals is infinite dimensional.

B Thus, in generic cases, a backward model does not exist.
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Outline

Grouped case
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Grouped additive noise models (GANMSs) Tm

B Now, suppose that X; = (X{,..., X; ) and Xy = (X7, ..., X)) are random vectors
with positive density w.r.t. the Lesbesgue measure, respectively.
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Grouped additive noise models (GANMs) Tm

B Now, suppose that X; = (X{,..., X; ) and Xy = (X7, ..., X)) are random vectors
with positive density w.r.t. the Lesbesgue measure, respectively.

B Consider the GANM:
X1 =Nj, Xs=f3(X1)+ Ny, withN; L Ny,

with f, € F C C3(R%, R%)
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Grouped additive noise models (GANMs) Tm

B Now, suppose that X; = (X{,..., X; ) and Xy = (X7, ..., X)) are random vectors
with positive density w.r.t. the Lesbesgue measure, respectively.

B Consider the GANM:
X1 =Nj, Xs=f3(X1)+ Ny, withN; L Ny,

with f, € F C C3(R%, R%)

B The joint density has the following form

DXy, X5 (X1, X2) = px, (X1)PN, (X2 — f2(x1))-
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GANMSs continued

B Suppose there exists a backward model of the same form
PX,,X, (Xh X2) = PX; (X2)pN1 (Xl - (XQ))'

Define
m1(X1,X2) = V(X2 — fa(x1)) + &(x1)

and
mo(x1,X2) = D(x1 — f1(x2)) + n(x2),
where v == log pN,, 7 = log pN, , € = log px,, and n := log px,.

B Clearly, we have that 7 (x1, x2) = ma(x1, X2) = log px, x, (X1, X2).
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Differential Equation 'I'I.I'I'I

Dx1Hé(xl)(Dxlxlwl)_lelxzﬁl - DX1Z)X1X27rl |:Dx1 (Hf2 (Xl)[VV(u)])

— Dy, (I, (x1) THL () g, (x1)) |

(DX1X1771)_1Dx1x2771

where He(x;) € Rée1*da1 J (x1) € Réw2*dz1 H,, (u) € R%2>d2, and the Hessian
H, € Ré2*de1*dey g g third-order tensor. The remaining second order derivatives of
the log marginal £ are contained in the expression for Dy, x, 71.

M Interpretation: directional projection of Dy, H¢(x1) onto the directions defined by the

columns of the matrix (Dx,x,m1) "' Dx,x,7T1. The dimensions d,, and d,, determine the
range of the resulting tensor contraction.
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Nonlinear causal discovery
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More than two variables T|.|T|

B Imposing some mild technical conditions, we can use this bivariate result to recursively
hold fix all but two variables and the corresponding conditional distribution to extend
these results to more than two variables [Peters et al., 2014].
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More than two variables T|.|T|

B Imposing some mild technical conditions, we can use this bivariate result to recursively
hold fix all but two variables and the corresponding conditional distribution to extend
these results to more than two variables [Peters et al., 2014].

B Needed: Each variable’s noise term is independent of its non-descendants.
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More than two variables T|.|T|

B Imposing some mild technical conditions, we can use this bivariate result to recursively
hold fix all but two variables and the corresponding conditional distribution to extend
these results to more than two variables [Peters et al., 2014].

B Needed: Each variable’s noise term is independent of its non-descendants.

X1 = fi(N1) @

Xo = fo(X1, N2)

o ey ORO
Xy = fa(X1, X3, Ny), @

Ni, ..., Ny jointly independent
nd(Xy) = {X1, X2, X3} = {fi(IV1), fo(X1, Na2), f3(X2, N3)}
Ny L X\ X,
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Regression with subsequent independence test (RESIT) Tm
Cycle repeatedly through the following steps [Peters et al., 2014]:

1. Take the current data, and train regression models for each variable onto all other
variables i.e. reg(X; onto X \ X;).

2. Predict and obtain estimates for the residuals (additivity assumption) }?i =X, — XL-

3. Find the residual that is most independent from all other variables (vector independence
test), and remove it from the dataset.

4. Prepend the removed variable to the causal ordering.
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Regression with subsequent independence test (RESIT) Tm
Cycle repeatedly through the following steps [Peters et al., 2014]:

1. Take the current data, and train regression models for each variable onto all other
variables i.e. reg(X; onto X \ X;).

2. Predict and obtain estimates for the residuals (additivity assumption) }?i =X, — XL-

3. Find the residual that is most independent from all other variables (vector independence
test), and remove it from the dataset.

4. Prepend the removed variable to the causal ordering.

G ® P C
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Pruning edges Tm

Given a valid causal ordering, finding the true DAG boils down to a model/feature selection
problem:

Konstantin Gébler | Nonlinear Causal Discovery for Grouped Data | October 29, 2025 20



Pruning edges Tm

Given a valid causal ordering, finding the true DAG boils down to a model/feature selection
problem:
1. Draw the DAG inserting all possible edges that conform to the causal ordering.
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Pruning edges Tm

Given a valid causal ordering, finding the true DAG boils down to a model/feature selection
problem:
1. Draw the DAG inserting all possible edges that conform to the causal ordering.

2. For each node in this order perform feature selection to obtain the “active” edges.
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Nonlinear causal discovery for grouped data Tm

FIRST PHASE:
B Multiresponse/Multitask learning problem — Deep NN.

B Vector-vector nonparametric marginal independence test — Hilbert Schmidt
Independence Criterion (HSIC) [Gretton et al., 2005].
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Nonlinear causal discovery for grouped data Tm

FIRST PHASE:

B Multiresponse/Multitask learning problem — Deep NN.

B Vector-vector nonparametric marginal independence test — Hilbert Schmidt
Independence Criterion (HSIC) [Gretton et al., 2005].

SECOND PHASE:

B Multiresponse group sparse additive models (MURGS).
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MURGS T

B MURGS can be cast as a penalized M-estimator through the following optimization
problem

A

f= Yo Ly + A‘I’j(f)}

f: f( H““) {Qn keld; ) icn]

B with A\ > 0 a regularization parameter and

®)|
= 3 g a5

gepa;
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MURGS T

B MURGS can be cast as a penalized M-estimator through the following optimization
problem

A

f= Yo Ly + A‘I’j(f)}

f: f( H““) {Qn keld; ) icn]

B with A\ > 0 a regularization parameter and

®)|
= 3 g a5

gepa;

B combining the sum of sup-norms regularization with the functional version of the ¢1/¢2
norms.
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Closed-form backfitting update Tm

Denote P, = E[ - | X,Sg)] the conditional expectation operator, Q = (Pp)ne[q,) @nd

- HQRék)H. Assume that E[féffh), | X,(Lg)] = 0 for all ’ # h, i.e., the covariance among

the component functions within groups is zero. Order the indices according to

ka,
sgkl) > sf]kQ) > > sé dj). Then the backfitting solution is given by

P(k")R(k") fori > m*

(ki) _ (ki) (k7
Toh [Zl 15 fA] L ,ﬁ fori < m*,

+

for all h € [d,] and
1 m
m* = arg max — (Z sék’) - \/679A> .
=1

meld;]
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Simulation results
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Thank you all for your interest

Questions?
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