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What are we talking about?

■ This talk:

X1 X2

X1 X2

■ (Later) with p > 2 random variables present.

■ (Later) with Xi, i ∈ [p] being random vectors (or groups) rather than scalar random
variables.
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Identifiability

■ Without any further assumptions, direction of the edge can’t be inferred from
observations from X1 and X2, even in the infinite data limit [Spirtes et al., 1993].

■ Performing an intervention in this setting will allow us to orient the edge [Pearl, 2009].

■ However, interventions might be costly, unethical, or infeasible in practice.

■ Certain model classes, it turns out, allow us to orient the causal edge, without
interventional data.
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Structural equation models

A structural equation model (SEM) [Bollen, 1989] is a tuple (S, P (N)), where
S = (S1, . . . , Sp) is a collection of p equations

Sk : Xk = fk(Xpa(k), Nk), k ∈ [p],

and P (N) = P (N1, . . . , Np) is the joint product distribution of exogenous noise terms.

X1 := f1(N1)
X2 := f2(X1, N2)
X3 := f3(X2, N3)
X4 := f4(X1, X3, N4),

N1, . . . , N4 jointly independent

X1

X2

X3

X4
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Identifiability

■ Let us make the notion of identifiability more precise.

■ Consider the following SEM over two (not necessarily scalar) random variables X1 and
X2,

X1 = N1, X2 = f2(X1, N2),

with N1 ⊥⊥ N2 and the following DAG

X1 X2

■ We know of course that the DAG with the edge reversed lives in the same Markov
equivalence class.
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■ Consider the following SEM

X2 = f(X1, N2), with X1 ⊥⊥ N2.

■ Clearly, if the reversed causal direction were valid, one could write

X1 = f̃(X2, N1), with X2 ⊥⊥ N1.

with f, f̃ ∈ F some general functional class.

■ It turns out, without restrictions on the functional class F , Hyvärinen and Pajunen [1999]
show that there always exists a suitable function f̃ ∈ F ensuring X2 ⊥⊥ N1.

■ The absence of constraints on F renders the SEM symmetric with respect to variables
X1 and X2.
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Identifiability

■ Let’s depict the joint distributions that may be generated from the causal SEM (C) and
the anticausal SEM (A) inside the set of all possible joint distributions P .

P

C A

■ Identifiability: Size of the intersection C ∩ A. If C and A were to contain almost the same
set of joint distributions, we would regard the model class as non-identifiable.

■ Conversely, if the intersection is very small, we would regard the model class as
identifiable.
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One specific restriction on F
■ Let’s motivate one model class that enables us to orient the edge.

X1 = N1

X2 = f2(X1) + N2

X1 X2

■ where f2 is assumed to be a three-times differentiable nonlinear function.

Why is this model class identiable?

■ Fact: E[X2 | X1] “best” predicts X2 as a function of X1.
■ By construction:

Corr(X2 − E[X2 | X1], X1) = Corr(X1 − E[X1 | X2], X2) = 0
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Nonlinear Additive noise models (ANMs)

■ Let’s motivate the model class that enables us to orient the edge below.

X1 = N1

X2 = f2(X1) + N2

X1 X2

■ Regression the right way around: X2 − E[X2 | X1] = X2 − f2(X1) = N2, then

N2 ⊥⊥ X1

■ Regression the wrong way around: for some general nonlinear f2, it holds that

X1 − E[X1 | X2] ̸⊥⊥ X2, (but uncorrelated).
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ANM: X1 = N1, X2 = exp(X1) + N2 and Ni ∼ N(0, 1), i = 1, 2
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Comparing forward and backward model
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Non-intentifiable: f2(z) = a ∗ z + b and Ni ∼ N(0, 1), i = 1, 2
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]
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Exact condition for non-identifiability

■ It turns out that we can characterize the intersection C ∩ A exactly.

■ First shown by Hoyer et al. [2008], a bivariate SEM is identifiable if the triple
(fj , P (Xi), P (Nj)) for i, j ∈ {1, 2} does not solve the following differential equation

ξ′′′ = ξ′′
(

−ν ′′′f ′

ν ′′ + f ′′

f ′

)
− 2ν ′′f ′′f ′ + ν ′f ′′′ + ν ′′′ν ′f ′′f ′

ν ′′ − ν ′(f ′′)2

f ′ ,

where f := fj , ξ := log pXi , ν := log pNj .

■ The differential equation for ξ has a 3-dimensional space of solutions, while a priori, the
space of all possible log-marginals is infinite dimensional.

■ Thus, in generic cases, a backward model does not exist.
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Grouped additive noise models (GANMs)

■ Now, suppose that X1 = (X1
1 , . . . , X1

d1
) and X2 = (X2

1 , . . . , X2
d2

) are random vectors
with positive density w.r.t. the Lesbesgue measure, respectively.

■ Consider the GANM:

X1 = N1, X2 = f2(X1) + N2, with N1 ⊥⊥ N2,

with f2 ∈ F ⊆ C3(Rd1 ,Rd2)

■ The joint density has the following form

pX1,X2(x1, x2) = pX1(x1)pN2(x2 − f2(x1)).
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GANMs continued

■ Suppose there exists a backward model of the same form

pX1,X2(x1, x2) = pX2(x2)pN1(x1 − f1(x2)).

Define
π1(x1, x2) := ν(x2 − f2(x1)) + ξ(x1) (1)

and
π2(x1, x2) := ν̃(x1 − f1(x2)) + η(x2), (2)

where ν := log pN2 , ν̃ := log pN1 , ξ := log pX1 , and η := log pX2 .

■ Clearly, we have that π1(x1, x2) = π2(x1, x2) = log pX1,X2(x1, x2).
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Differential Equation

Dx1Hξ(x1)(Dx1x1π1)−1Dx1x2π1 = Dx1Dx1x2π1
[
Dx1

(
Hf2(x1)[∇ν(u)]

)
− Dx1

(
Jf2(x1)⊤Hν(u)Jf2(x1)

)]
(Dx1x1π1)−1Dx1x2π1

where Hξ(x1) ∈ Rdx1 ×dx1 , Jf2(x1) ∈ Rdx2 ×dx1 , Hν
(
u
)

∈ Rdx2 ×dx2 , and the Hessian
Hf2 ∈ Rdx2 ×dx1 ×dx1 is a third-order tensor. The remaining second order derivatives of
the log marginal ξ are contained in the expression for Dx1x1π1.

■ Interpretation: directional projection of Dx1Hξ(x1) onto the directions defined by the
columns of the matrix (Dx1x1π1)−1Dx1x2π1. The dimensions dx1 and dx2 determine the
range of the resulting tensor contraction.
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More than two variables

■ Imposing some mild technical conditions, we can use this bivariate result to recursively
hold fix all but two variables and the corresponding conditional distribution to extend
these results to more than two variables [Peters et al., 2014].

■ Needed: Each variable’s noise term is independent of its non-descendants.

X1 := f1(N1)
X2 := f2(X1, N2)
X3 := f3(X2, N3)
X4 := f4(X1, X3, N4),

N1, . . . , N4 jointly independent

X1

X2

X3

X4

nd(X4) = {X1, X2, X3} = {f1(N1), f2(X1, N2), f3(X2, N3)}
N4 ⊥⊥ X \ X4
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Regression with subsequent independence test (RESIT)

Cycle repeatedly through the following steps [Peters et al., 2014]:

1. Take the current data, and train regression models for each variable onto all other
variables i.e. reg(Xi on to X \ Xi).

2. Predict and obtain estimates for the residuals (additivity assumption) R̂i = Xi − X̂i

3. Find the residual that is most independent from all other variables (vector independence
test), and remove it from the dataset.

4. Prepend the removed variable to the causal ordering.

X1

X2

X3

X4
X1

X2

X3 X1

X2

π = {X1, X2, X3, X4}
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Pruning edges

Given a valid causal ordering, finding the true DAG boils down to a model/feature selection
problem:

1. Draw the DAG inserting all possible edges that conform to the causal ordering.

2. For each node in this order perform feature selection to obtain the “active” edges.

X1

X2

X3

X4
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2. For each node in this order perform feature selection to obtain the “active” edges.
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Nonlinear causal discovery for grouped data

FIRST PHASE:
■ Multiresponse/Multitask learning problem → Deep NN.

■ Vector-vector nonparametric marginal independence test → Hilbert Schmidt
Independence Criterion (HSIC) [Gretton et al., 2005].

SECOND PHASE:
■ Multiresponse group sparse additive models (MURGS).
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MURGS

■ MURGS can be cast as a penalized M-estimator through the following optimization
problem

f̂ = min
f :f (k)

g,h
∈H(k)

g,h

{
1

2n

∑
k∈[dj ],i∈[n]

Lf (k)(xi, y
(k)
i ) + λΦj(f)

}

■ with λ > 0 a regularization parameter and

Φj(f) =
∑

g∈paj

√
dg max

k∈[dj ]
∥f (k)

g ∥,

■ combining the sum of sup-norms regularization with the functional version of the ℓ1/ℓ2
norms.
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Closed-form backfitting update

Denote Ph = E[ · | X
(g)
h ] the conditional expectation operator, Q = (Ph)h∈[dg ] and

s
(k)
g = ∥QR

(k)
g ∥. Assume that E[f (k)

g,h′ | X
(g)
h ] = 0 for all h′ ̸= h, i.e., the covariance among

the component functions within groups is zero. Order the indices according to

s
(k1)
g ≥ s

(k2)
g ≥ · · · ≥ s

(kdj
)

g . Then the backfitting solution is given by

f
(ki)
g,h =


P

(ki)
h R

(ki)
g for i > m∗

1
m∗

[∑m∗
l=1 s

(kl)
g −

√
dgλ

]
+

P
(ki)
h

R
(ki)
g

s
(ki)
g

for i ≤ m∗,

for all h ∈ [dg] and

m∗ = arg max
m∈[dj ]

1
m

(
m∑

l=1
s(kl)

g −
√

dgλ

)
.
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Simulation results
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Thank you all for your interest

Questions?
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