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Probability Theory
Probability Space

(Ω,H,P)
Set of outcomes σ-algebra of events Probability measure

Foundations of the Theory of Probability, Andrei N Kolmogorov, 1933.
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Is Probability Theory All We Need?
Ice Cream Sales vs Beach Accidents
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Is Probability Theory All We Need?
Rain and Plant Growth
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Is Probability Theory All We Need?
Is Moderate Drinking Good For Health?
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Why is Causality Important?
Evaluation of Policy / Drug / Business Strategy
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Why is Causality Important?
Image Classification
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Why is Causality Important?
Large Language Models
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Manipulation is at the heart of Causality

We are interested in what happens to a system, when we intervene on a
sub-system.

Schölkopf, Locatello, Bauer, Ke, Kalchbrenner, Goyal and Bengio, Towards Causal
Representation Learning, 2021.
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Existing Frameworks
Structural Causal Models (SCMs) Potential Outcomes

Causality, Pearl, Cambridge University Press, 2009
Elements of Causal Inference, Peters, Janzing and Schölkopf, MIT Press, 2017
Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction, Rubin and

Imbens, Cambridge University Press, 2015
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Limitations of Existing Frameworks

• Latent confounding

A B

U

• Cyclic causal relationships

A B

• Continuous-time stochastic processes
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Notations

• For a set T , we denote its power set by P(T ).

• Product measurable space with index set T :

(Ω,H) = (×t∈T Et ,⊗t∈TEt).

HS : sub-σ-algebra ofH corresponding to
S ∈ P(T ).
Intuition:H = HT is the entire space.HS is a
subspace.

• “Transition probability kernel”
KS from (Ω,HS) into (Ω,H):

KS(x , ·) → [0,1].

For every x ∈ (Ω,HS), KS(x , ·) is a measure on
(Ω,H).
Intuition: conditional distribution.

(Ω,H = HT )

(Ω,HS)

KS

(Ω,H = HT )

(Ω,HS′)

KS′
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Causal Spaces
A causal space is a quadruple (Ω,H,P,K), where

(Ω,H,P) = (×t∈T Et ,⊗t∈TEt ,P);

and

K = {KS : S ⊆ T}, KS : (Ω,HS) → (Ω,H)

where KS are causal kernels, such that
(i) for all A ∈ H and x ∈ Ω,

K∅(x ,A) = P(A);

(ii) for all A ∈ HS and x ∈ Ω,

KS(x ,A) = 1A(x).

P is the “observational distribution”.

(Ω,H = HT )

(Ω,HS)

KS

(Ω,H = HT )

(Ω,HS′)

KS′
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Interventions
An intervention is the process of
(a) choosing a sub-σ-algebraHU , and
(b) placing any measure Q on (Ω,HU).

New causal space: (Ω,H,Pdo(U,Q),Kdo(U,Q)), where

Pdo(U,Q)(A) =
∫

Q(dω)KU(ω,A)

and Kdo(U,Q) = {K do(U,Q)
S : S ∈ P(T )} with

K do(U,Q)
S (ω,A) =

∫
Q(dω′

U\S)KS∪U((ωS, ω
′
U\S),A).

(Ω,H,P,K)

(Ω,HU ,P)

(Ω,H, ?, ?)

(Ω,HU ,Q)
KU

(Ω,H,Pdo(U,Q),Kdo(U,Q))

(Ω,HU ,Q)
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Axioms of Causal Kernels
Recall that causal kernels KS from (Ω,HS) into (Ω,H) satisfy
(i) for all A ∈ H and x ∈ Ω,

K∅(x ,A) = P(A);

(ii) for all A ∈ HS and x ∈ Ω,

KS(x ,A) = 1A(x).

Intuition on the axioms:
(i) Pdo(∅,Q)(A) = P(A).
(ii) For A ∈ HU , Pdo(U,Q)(A) =

∫
Q(dx)1A(x) = Q(A).

(Ω,H,P,K)

(Ω,HU ,P)

(Ω,H, ?, ?)

(Ω,HU ,Q)
KU

(Ω,H,Pdo(U,Q),Kdo(U,Q))

(Ω,HU ,Q)
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Ice Cream Sales and Beach Accidents

• Causal space: (Eice × Eacc,Eice ⊗ Eacc,P,K)1.

• P has strong correlation.
• For causal kernels, let

• Kice(x ,A) = P(A) for all A ∈ Eacc; and
• Kacc(y ,B) = P(B) for all B ∈ Eice.

1Eice = Eacc = R and Eice = Eacc is the Lebesgue σ-algebra.
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Ice Cream Sales and Beach Accidents
A Number of beach accidents.
I Ice cream sales.

T Temperature.
E Economy.
W World.

A I

A I
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A I
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A I
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Crop Yield and Price

• Causal space: (Erice × Eprice,Erice ⊗ Eprice,P,K)2.

• No Intervention:

2Erice = Eprice = R and Erice = Eprice is the Lebesgue σ-algebra.
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Crop Yield and Price

• Intervention to fix rice = 3:

Krice(3,A) =
∫

A

1√
2π

e− 1
2 (x−4.5)2

dx

for A ∈ Eprice.
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Crop Yield and Price

• Intervention to fix price = 6:

Kprice(6,B) =

∫
B

1√
2π

e− 1
2 (x−4)2

dx

for B ∈ Erice.
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Crop Yield and Price

Rice Price

Urice Uprice

Rice = frice(Price,Urice), Price = fprice(Rice,Uprice).
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1-dimensional Brownian Motion

• Causal space: (×t∈R+Et ,⊗t∈R+Et ,P,K)3.

• P is the Wiener measure.
• For any s < t , the causal kernels are

Ks(x , y) =
1√

2π(t − s)
e− 1

2(t−s) (y−x)2

, Kt(x , y) =
1√
2πs

e− 1
2s y2

.

Past values affect the future, but future values do not affect the past.

3For each t ∈ R+, Et = R and Et is the Lebesgue σ-algebra.
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Not covered in this talk

• Causal effect [1].
• Sources & identifiability [1].
• Causal stochastic processes [1].

• Multiple causal spaces [2].
• Causal independence [2].

[1] A Measure-Theoretic Axiomatisation of Causality, P., Buchholz, Schölkopf and
Muandet, NeurIPS 2023

[2] Products, Abstractions and Inclusions of Causal Spaces, Buchholz*, P.* and Schölkopf,
UAI 2024
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Not covered in this talk
Counterfactuals

• Counterfactuals [3].
• Fundamental Theorem of Causality [3].
• Independence and Synchronisation of counterfactual worlds [3].

[3] Counterfactual Causal Spaces and the Fundamental Theorem of Causality, P., Yang
and Icard, to be submitted soon.
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Thank you.
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