

CLAM: Causal Spatial Disaggregation

Disaggregating causal effect for localised inference

Gerrit Grossmann*, Sumantrak Mukherjee* and Sebastian Vollmer

From Coarse to Fine Grained

Statistical downscaling / super resolution

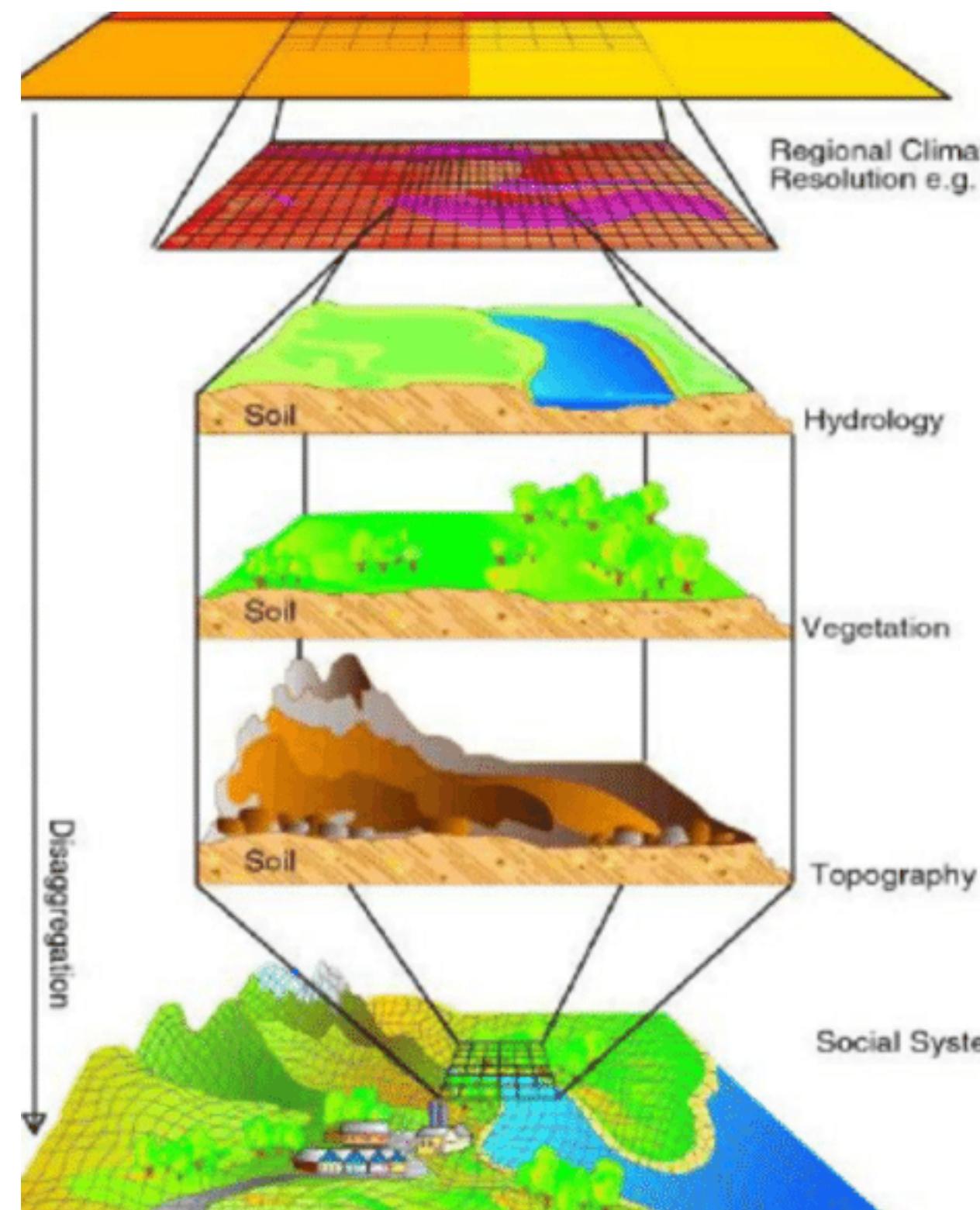
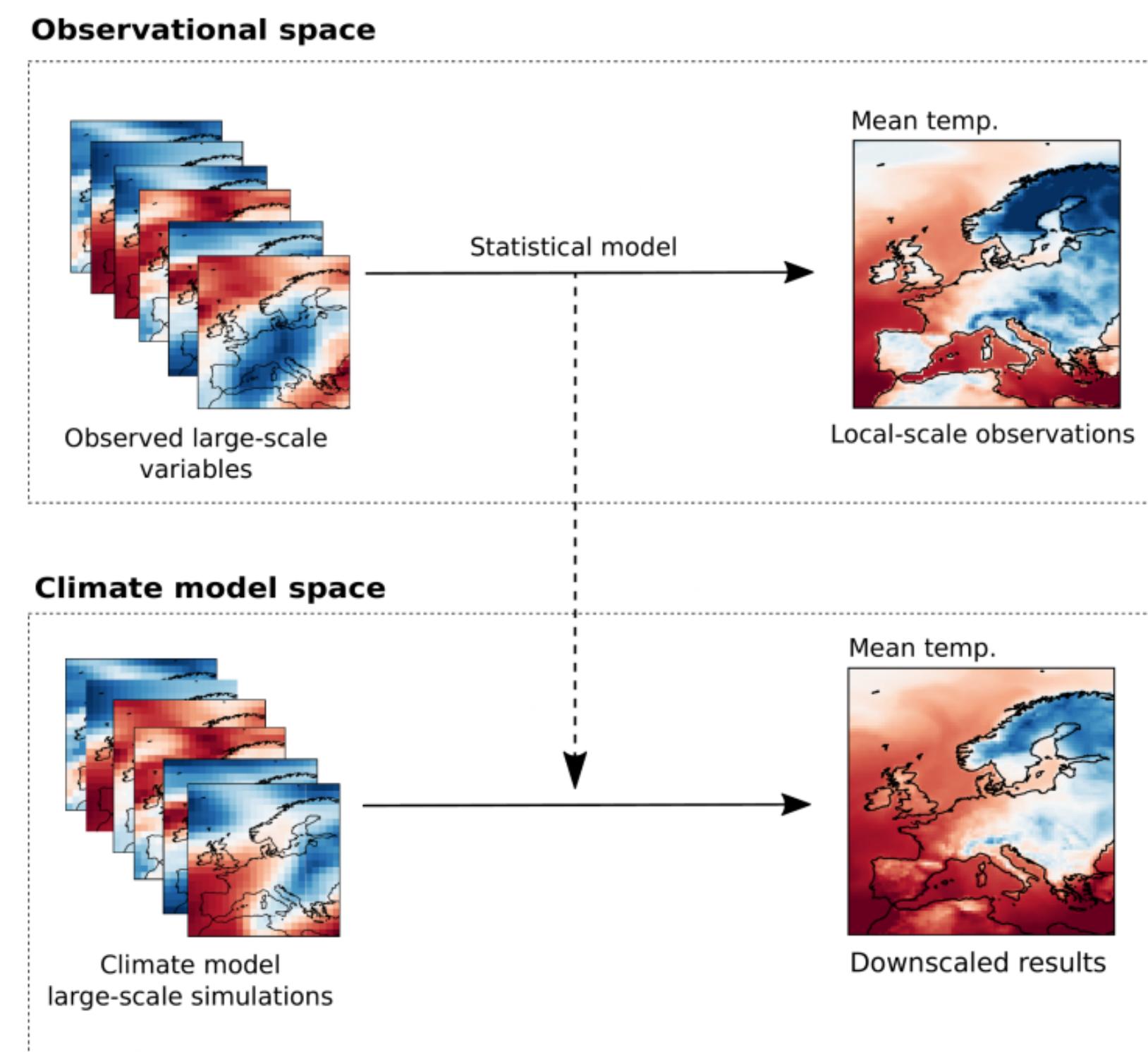
Given state voting outcomes, can we estimate results at the district level?

Can daily satellite temperature data estimate hourly surface temperature for specific location?

Given state level education scores, can we estimate school level performance distributions?

Statistical Downscaling

Refining low resolution observations using high resolution information



Regression between coarse predictors and fine scale observations

Matching based methods, using nearest estimate from historical data

Weather Generators and statistical change predictors

Statistical to Causal Downscaling

Learning local causal mechanism from aggregated data

Given regional voting outcomes, can we estimate results at sub-regional level?

Can daily satellite temperature data estimate hourly surface temperature for specific location?

Given state level education scores, can we estimate school level performance distributions?

How does regional level air quality policies affect street level pollution?

How do national vaccination campaigns affect local infection rates across villages?

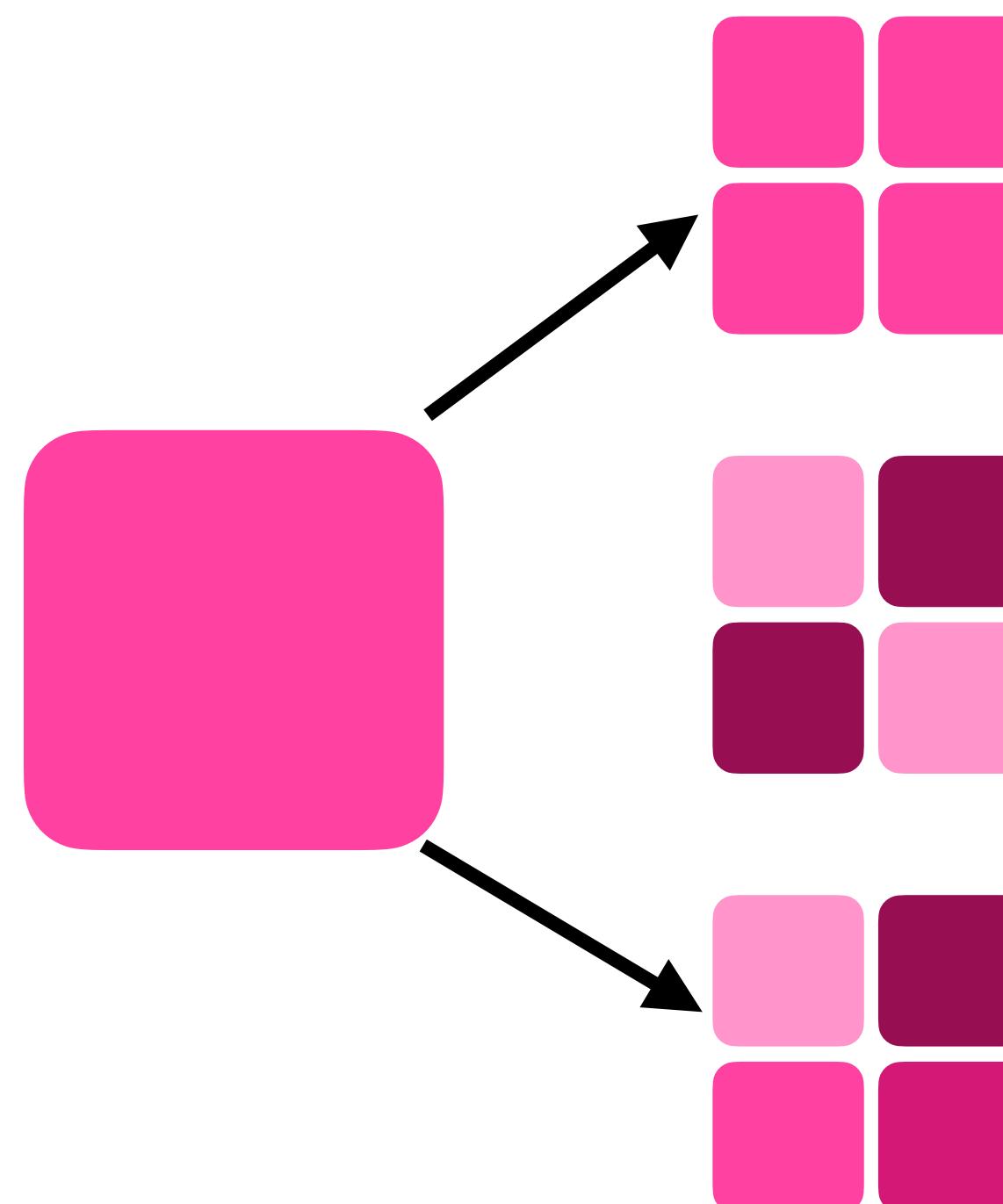
How do district-level education reforms translate into classroom-level learning outcomes?

Causal Disaggregation

Learning the true underlying causal effects

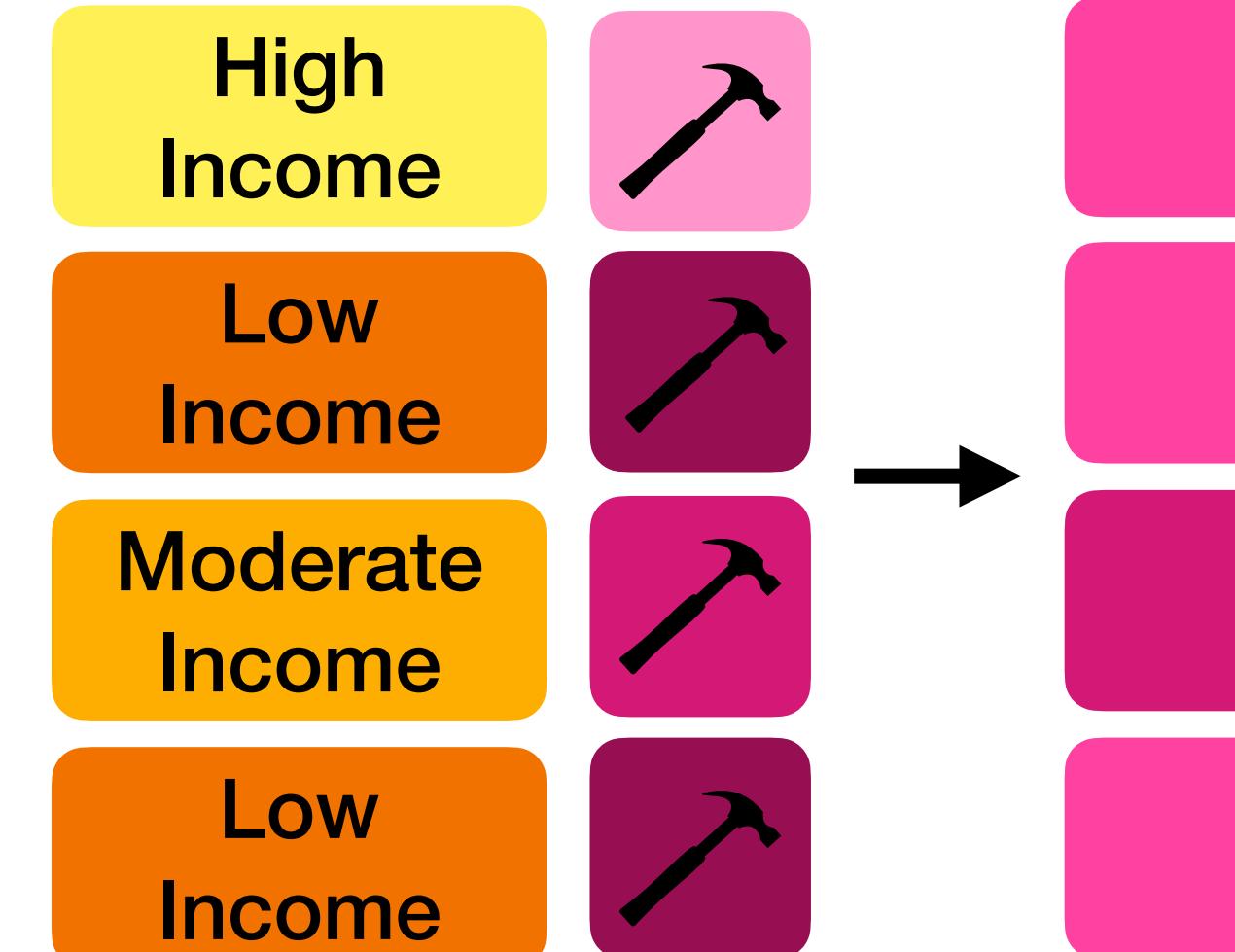
Voter turnout

Standard Disaggregation

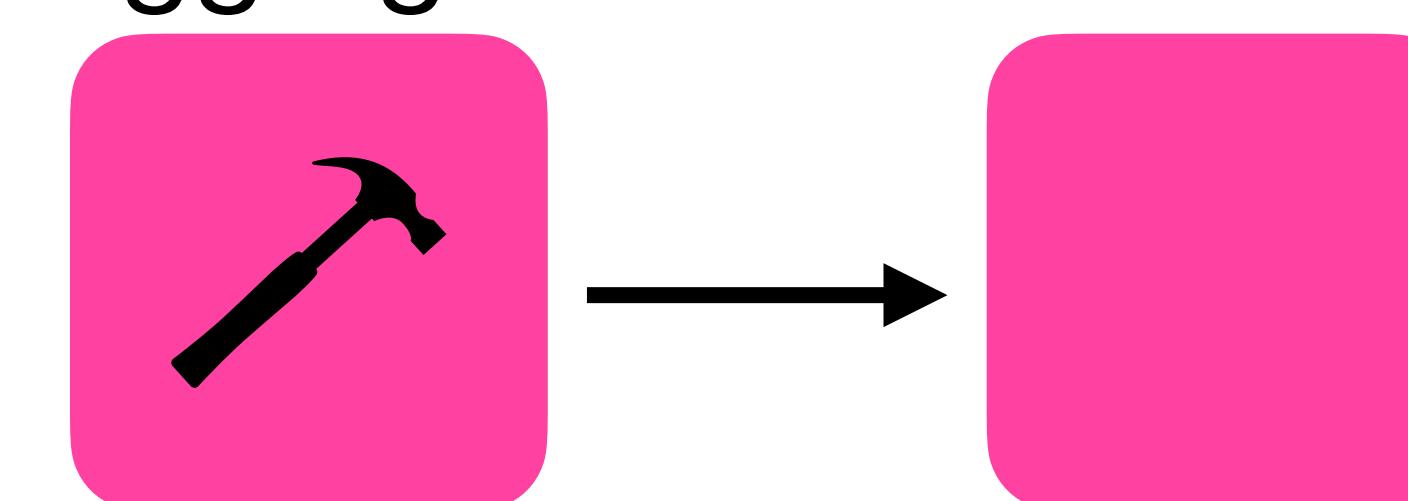


Voter turnout after advertisement

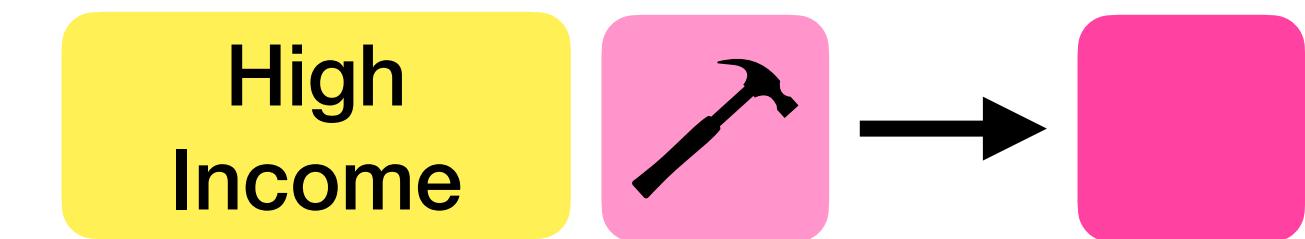
Subregion Causal Effect



Aggregated Causal Effect



Positive Effect

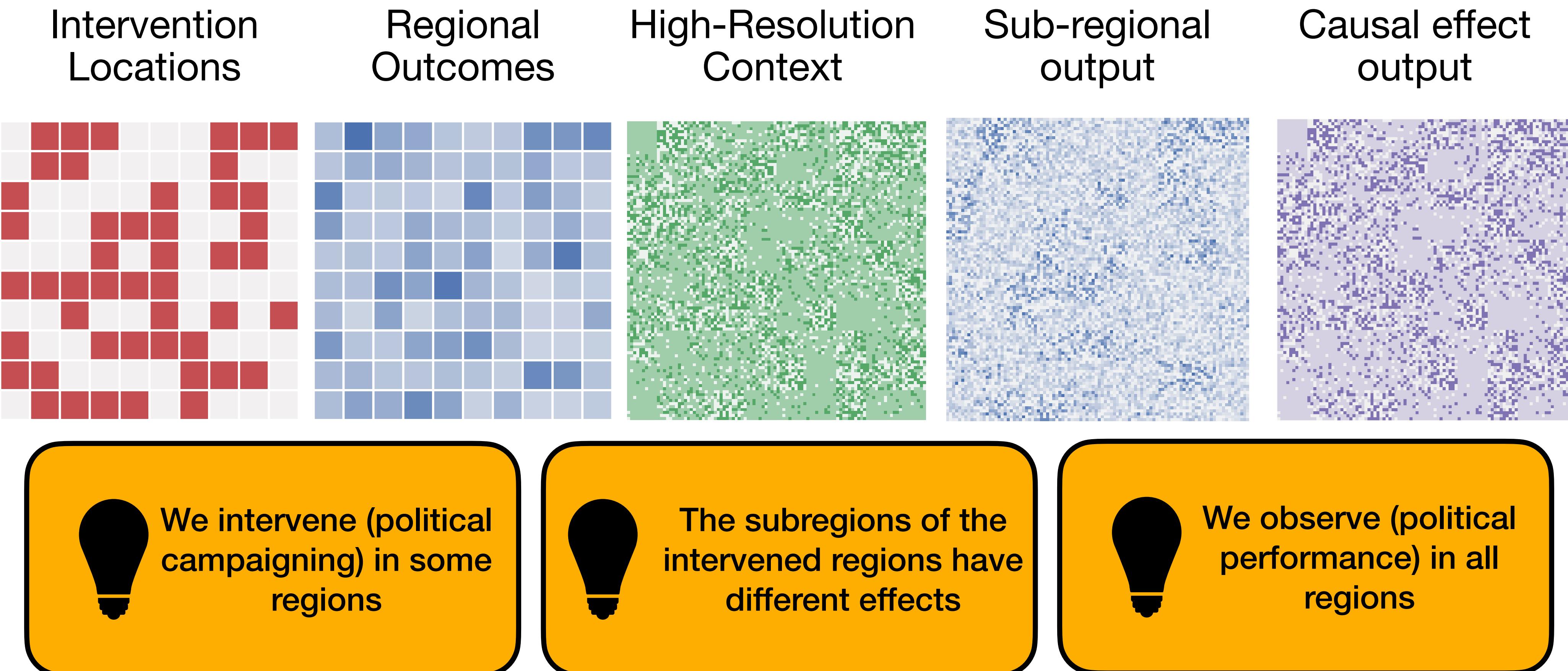


No Effect

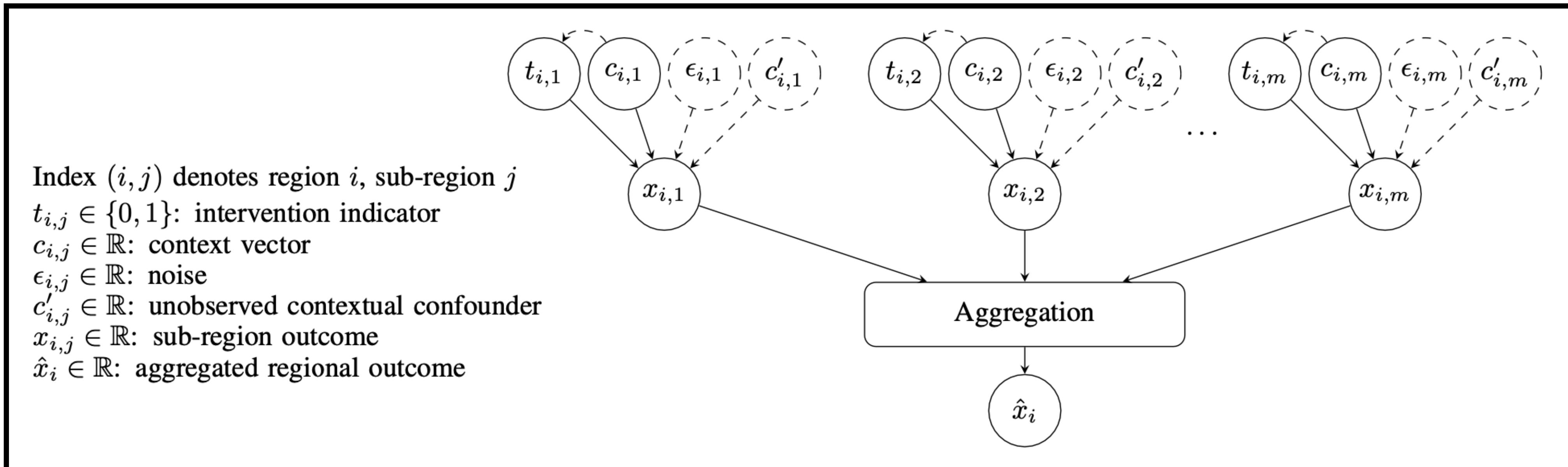
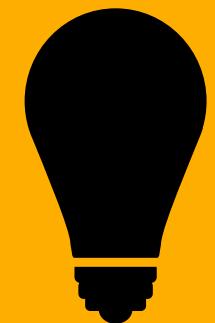
Negative Effect

Sub-regional outcomes from regional policy

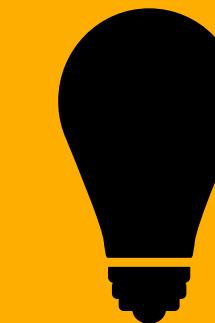
How does political campaigning affect politician performance?



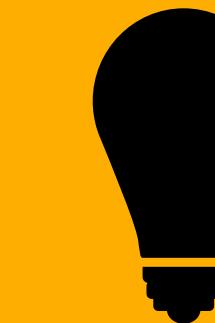
Causal Graph for a Region



All functional relationships are shared among the subregions



The outcome of the treatment depends on subregional context



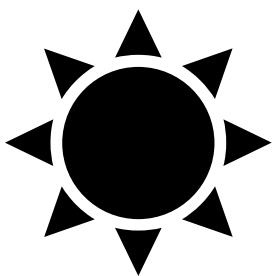
Aggregation can be something like mean, max or sum

Motivating Example

Drought and food prices

Different kinds of subregions

Irrigated Farmland
Rain-Fed Agriculture
Coastal Region
Urban Region



Population

2%	×	5M
30%	×	3M
8%	×	2M
3%	×	10M

Aggregated Price Increase

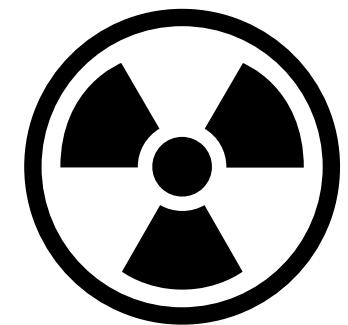
7.3%

In this example, we look at the effect of drought on food prices in different subregions. Some regions are affected severely while other regions relatively less.

Examples of Intervention and Covariates

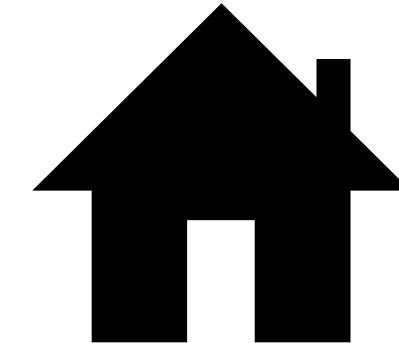
Policies are often implemented on an aggregated level

Education
Spending

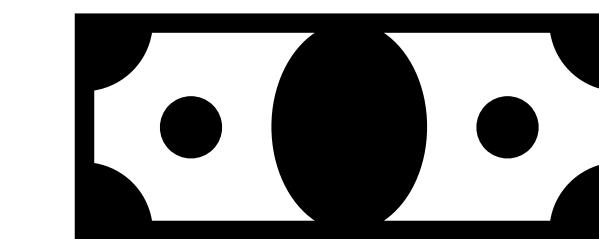


Emission
Policies

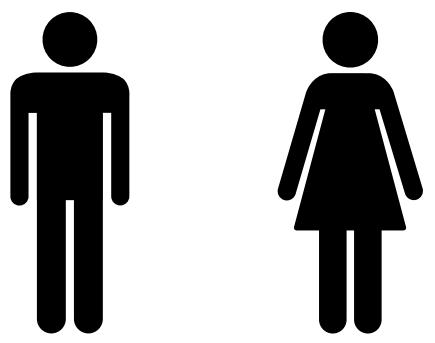
Public
Transit
Spending



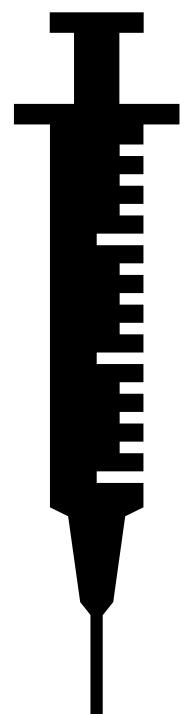
Household
Survey Data



Income and
Wealth

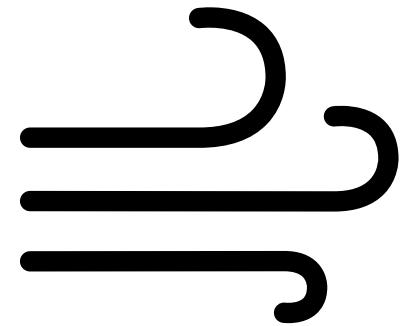


Demographic
Data

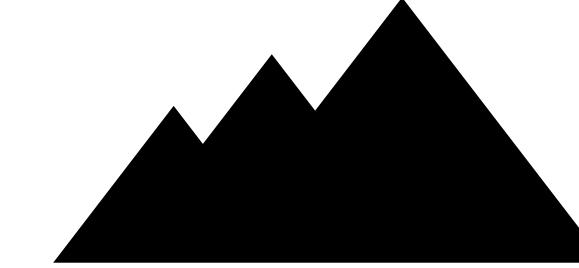


Vaccination
Drives

Healthcare
spending

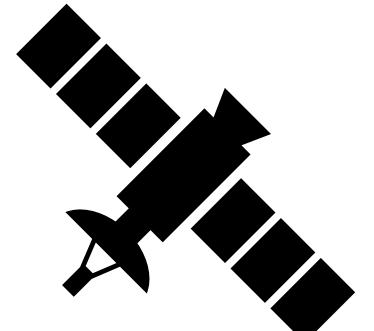


Disaster
Relief



Terrain and
Landscape

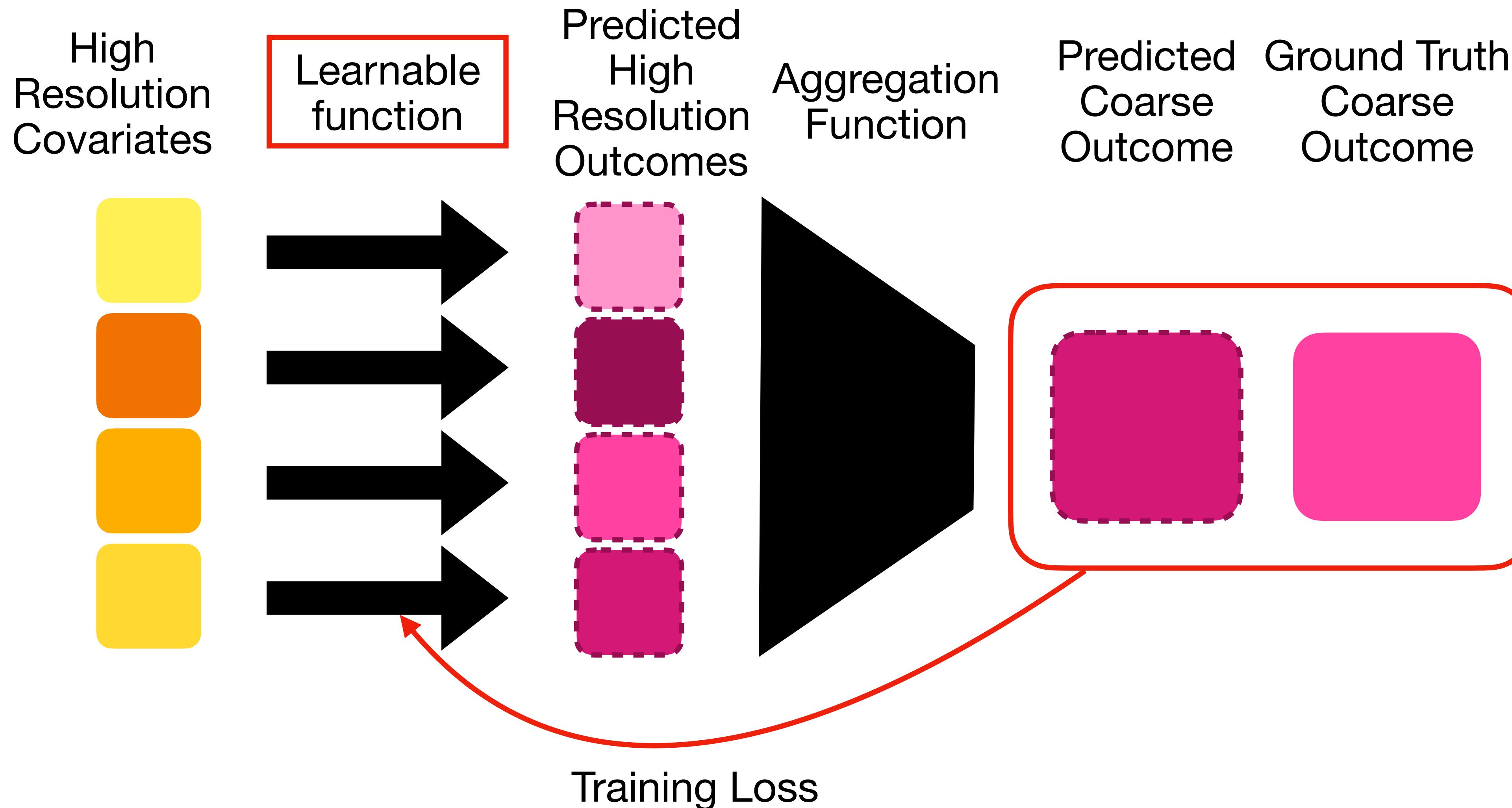
Internet
Surveys



Satellite
Images

The Idea Behind Our Method

Predict high resolution and then aggregate



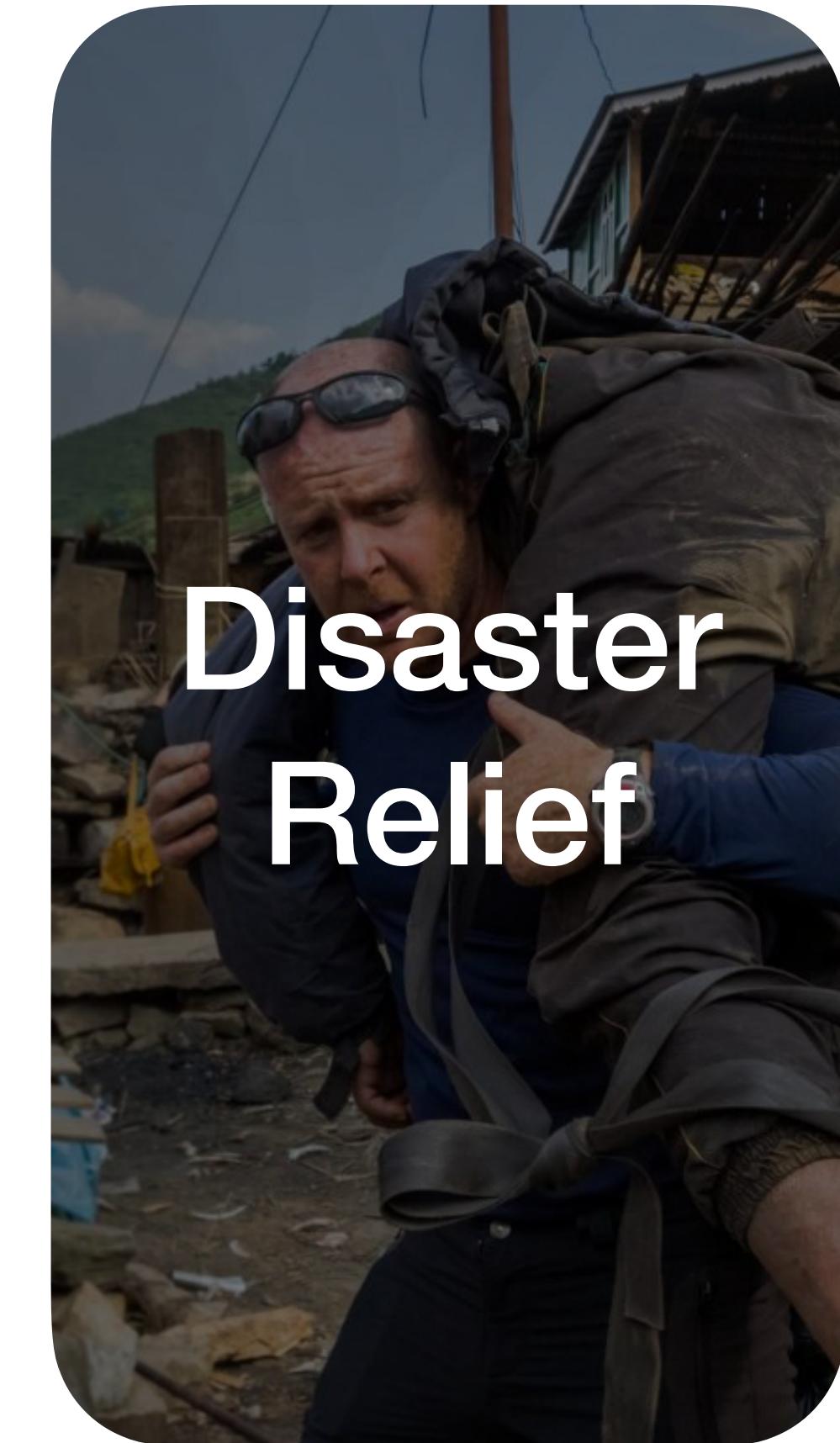
Applications of Causal Deabstraction

Allocating resources for the greatest impact

Education
Budget
Allocation

Vaccination
Drives

Election
Campaigns



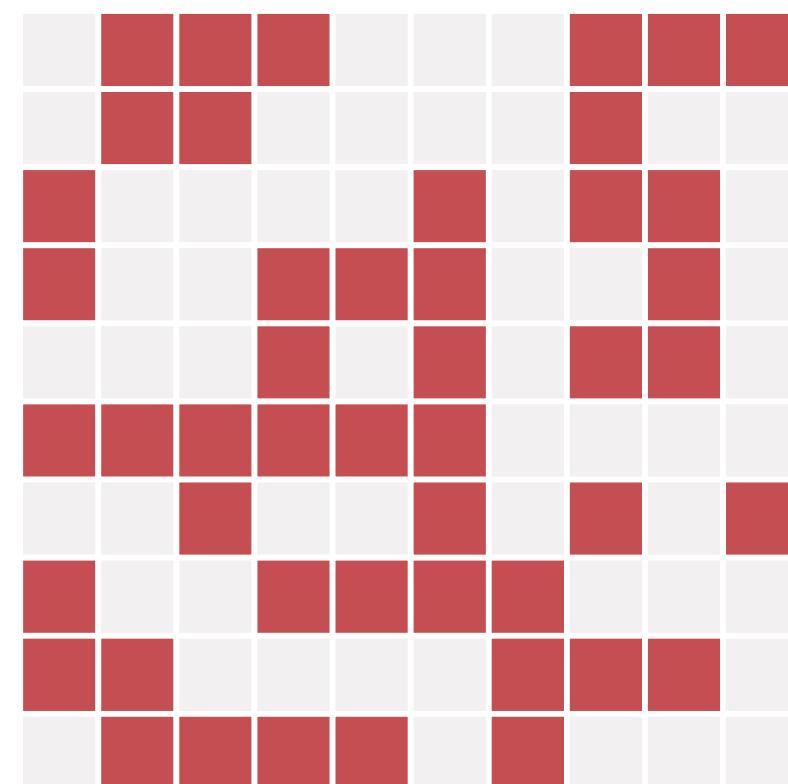
Disaster
Relief

Political Campaigning

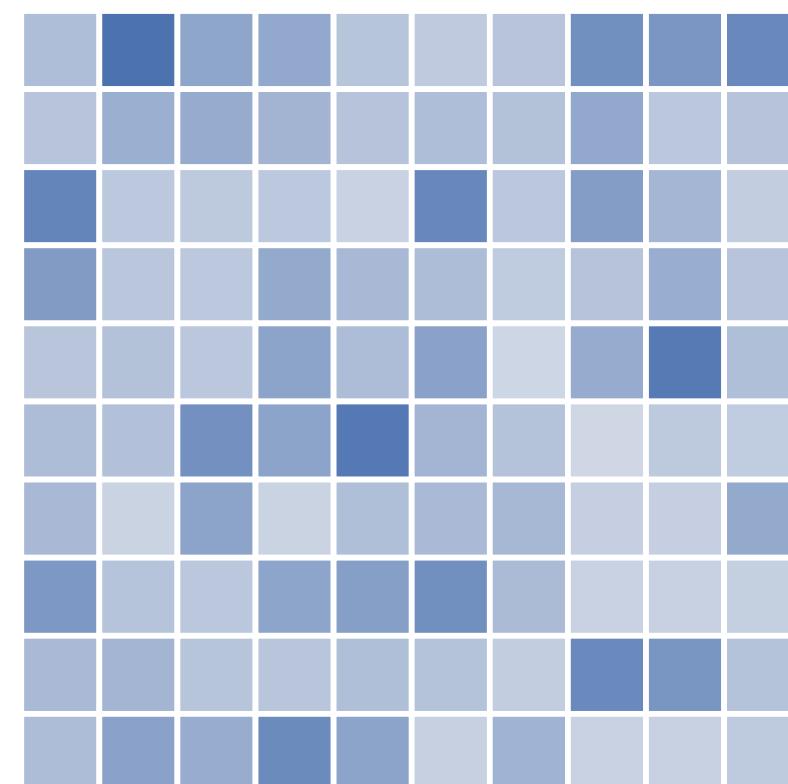
Experiment 1 : How does campaigning affect politician performance

Binary Treatment to Regions
region

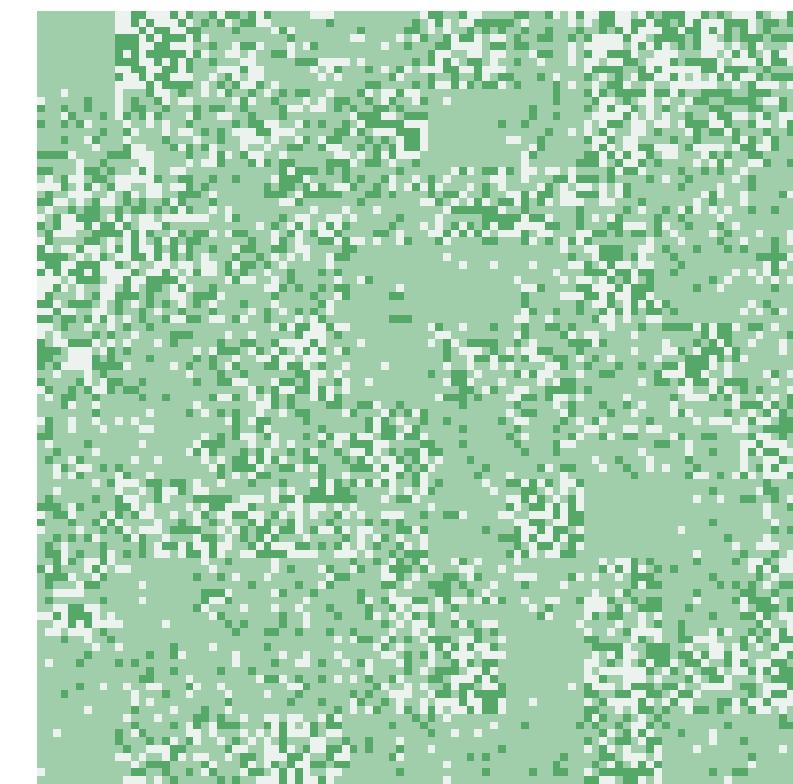
Intervention
Locations



Regional
Outcomes



High-Resolution
Context

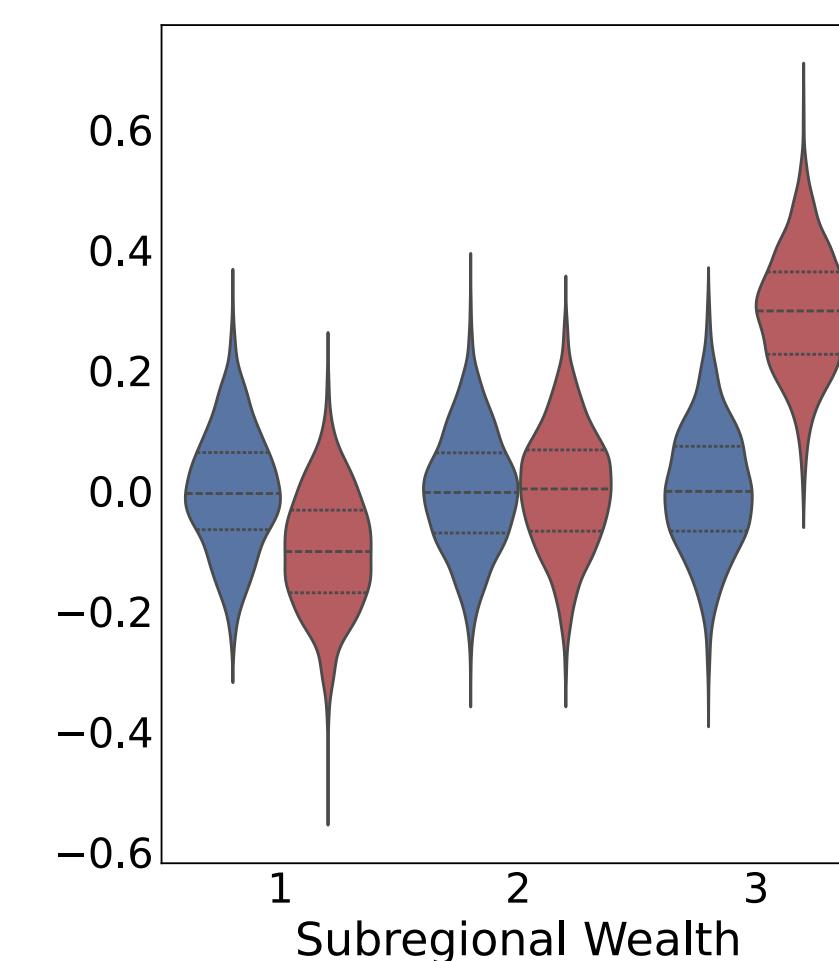


Context : 3 wealth levels {0,1,2}

Aggregation : Summing over all
subregions

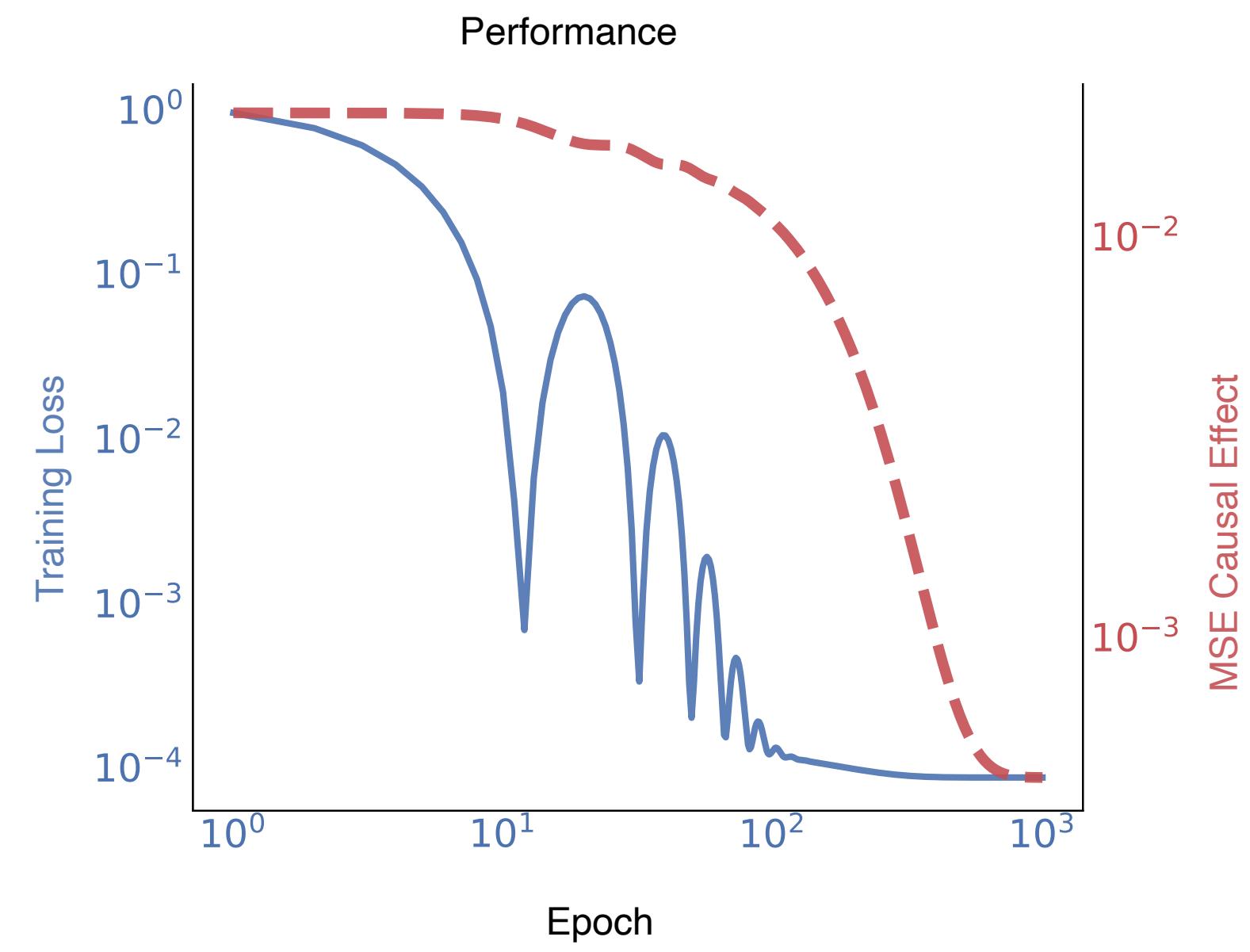
10x10 : Regions
10x10 subregions in each
region

Control
Intervened



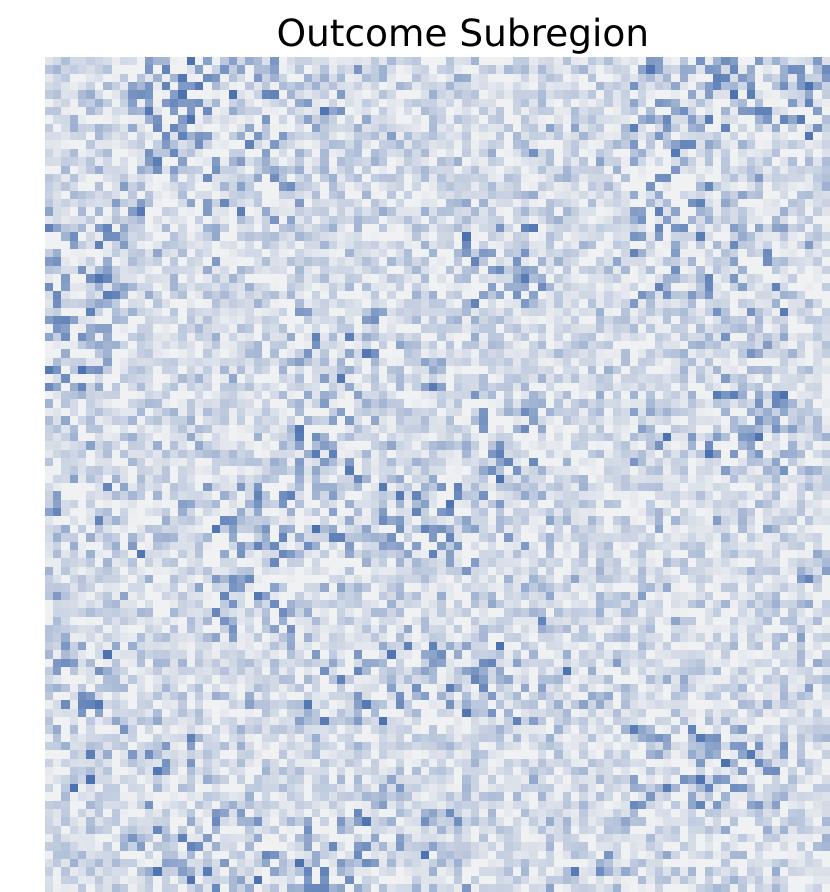
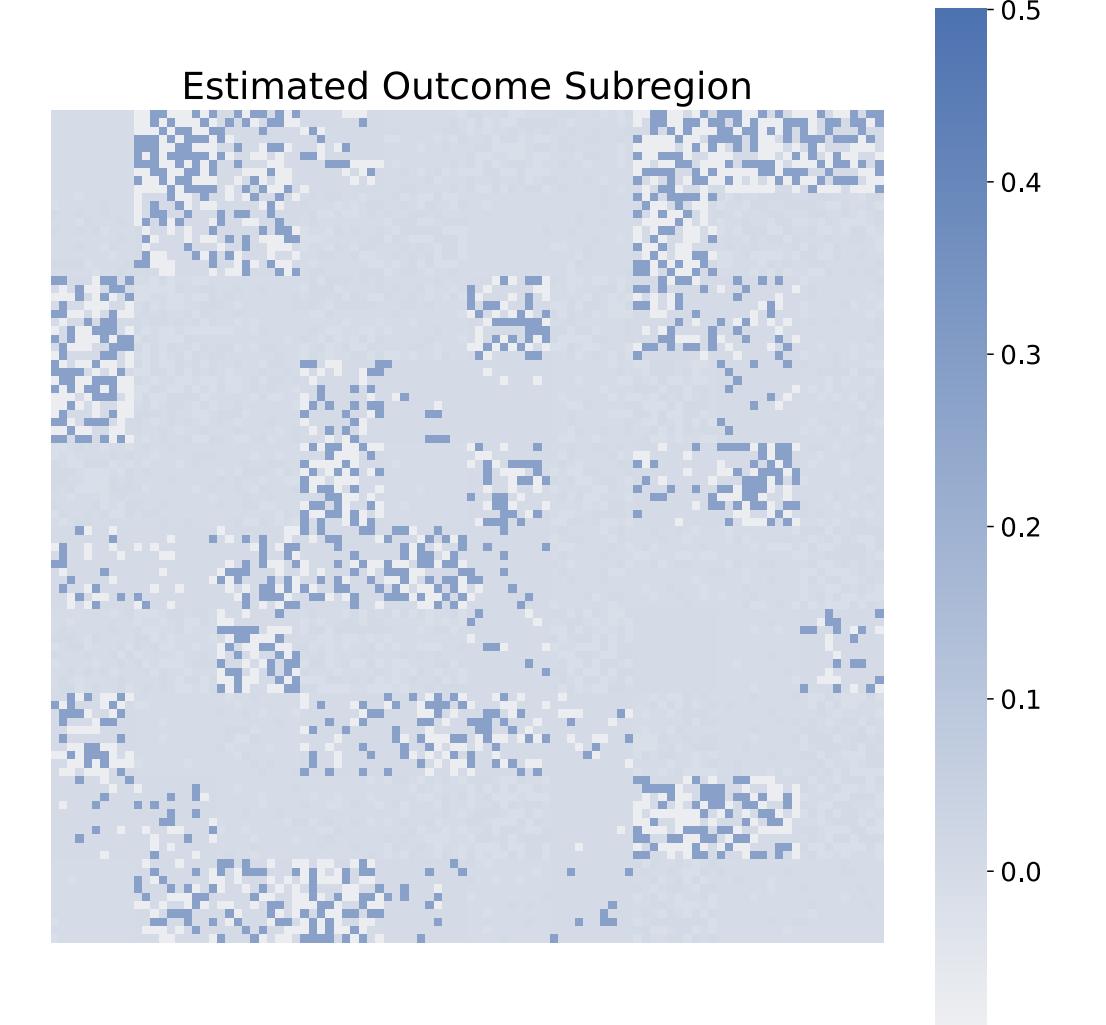
Political Campaigning

Experiment 1 : How does campaigning affect politician performance

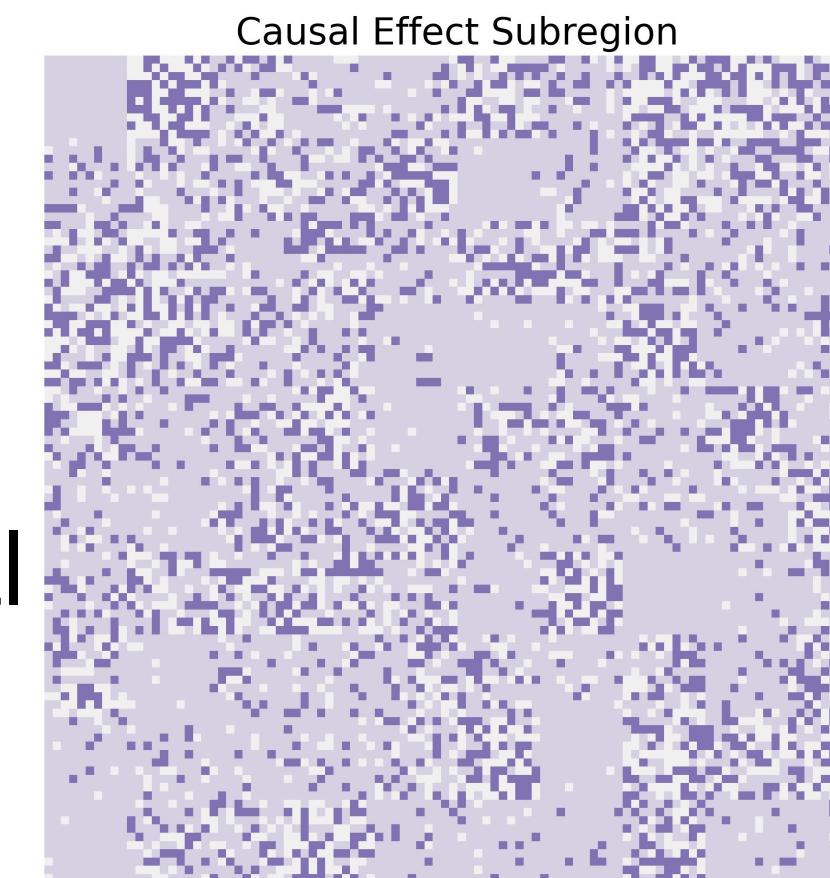
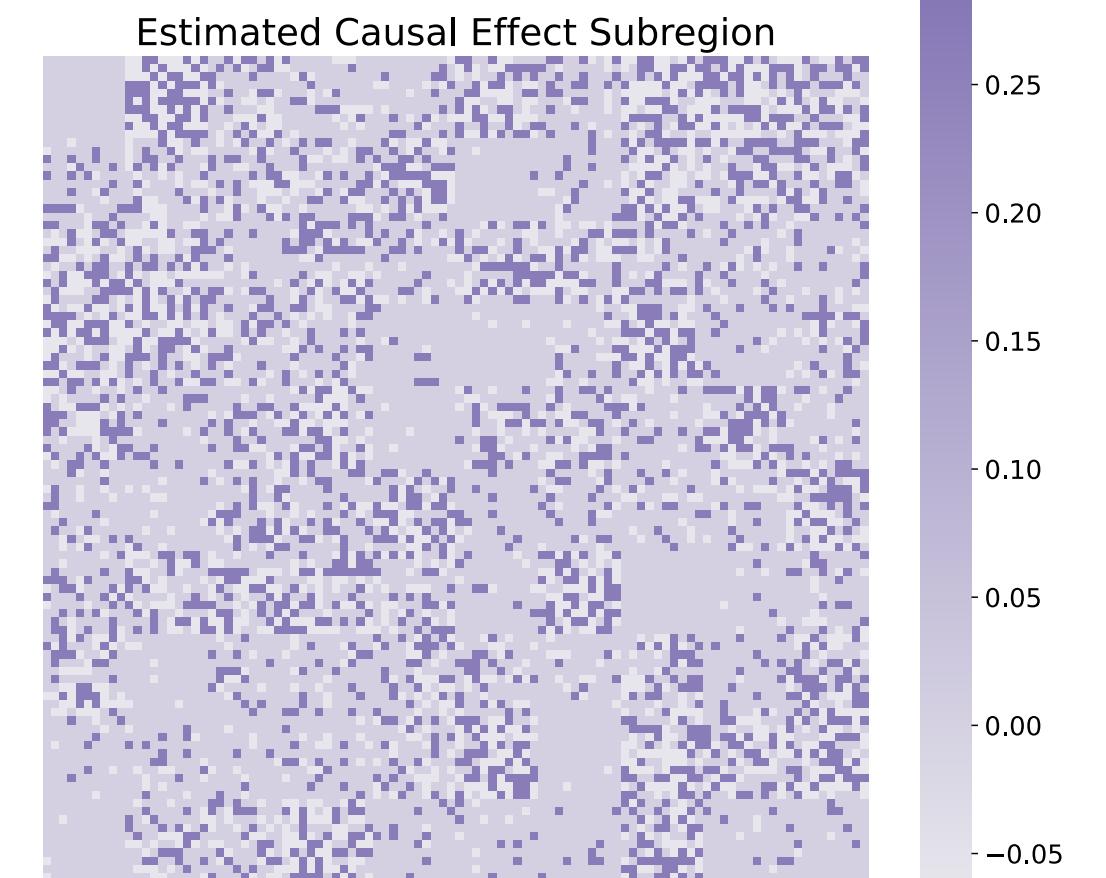


$$f_{\theta}(t_{i,j}, c_{i,j}) = \begin{cases} \theta_1 & \text{if } t_{i,j} = 0 \text{ and } c_{i,j} = 1 \text{ (poor),} \\ \theta_2 & \text{if } t_{i,j} = 0 \text{ and } c_{i,j} = 2 \text{ (middle class),} \\ \theta_3 & \text{if } t_{i,j} = 0 \text{ and } c_{i,j} = 3 \text{ (rich),} \\ \theta_4 & \text{if } t_{i,j} = 1 \text{ and } c_{i,j} = 1 \text{ (poor),} \\ \theta_5 & \text{if } t_{i,j} = 1 \text{ and } c_{i,j} = 2 \text{ (middle class),} \\ \theta_6 & \text{if } t_{i,j} = 1 \text{ and } c_{i,j} = 3 \text{ (rich).} \end{cases}$$

Ground truth vs estimated subregional outcomes



Ground truth vs estimated subregional causal effect

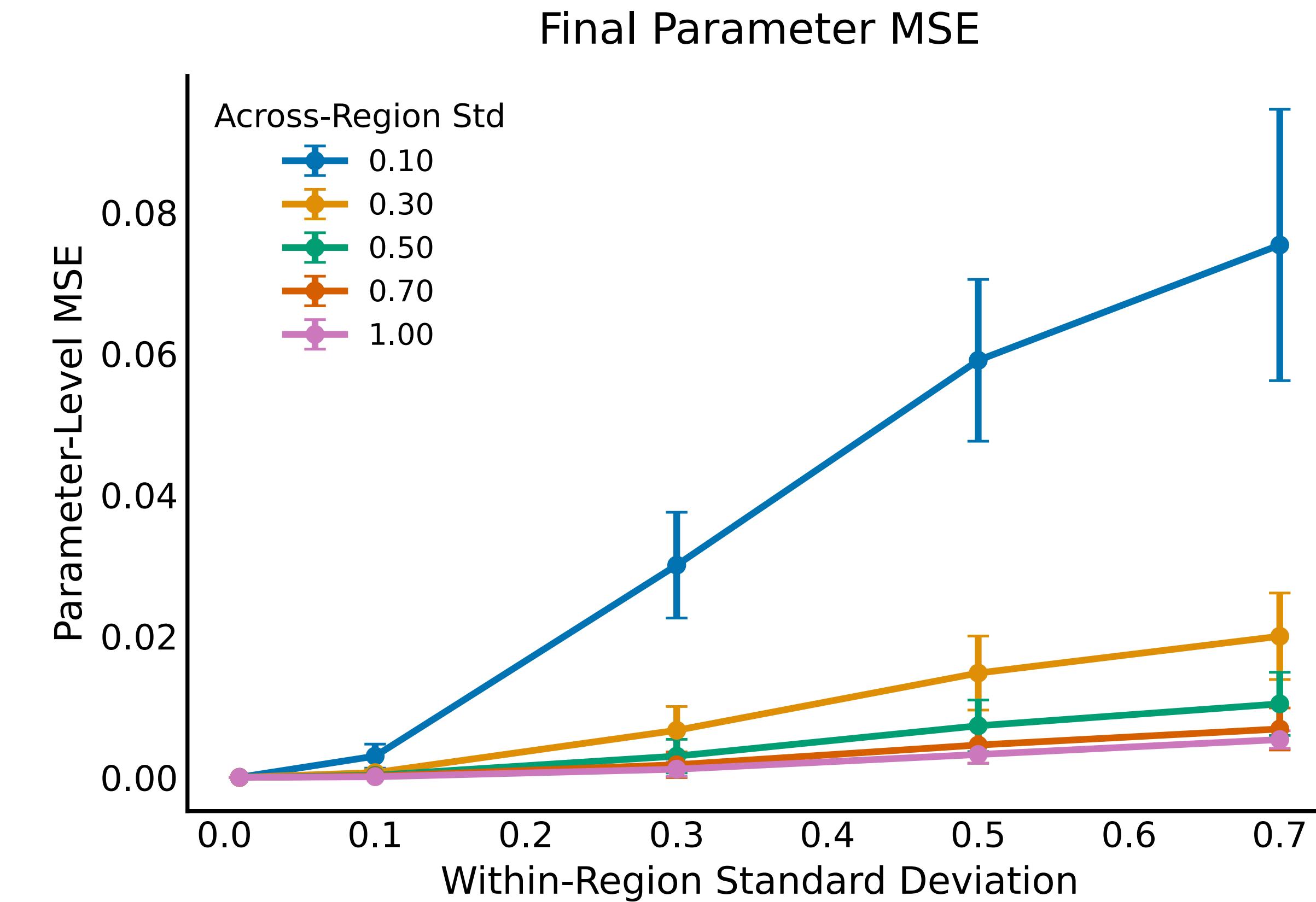


Ablation Study on Experiment 1

Effect of varying intra-region heterogeneity

 Low variability across regions - results in underdetermination of the inverse problem

 High dimensional contextual covariates at the subregion level can help



Unknown Intervention Locations

Experiment 2: High school funding vs educational outcomes

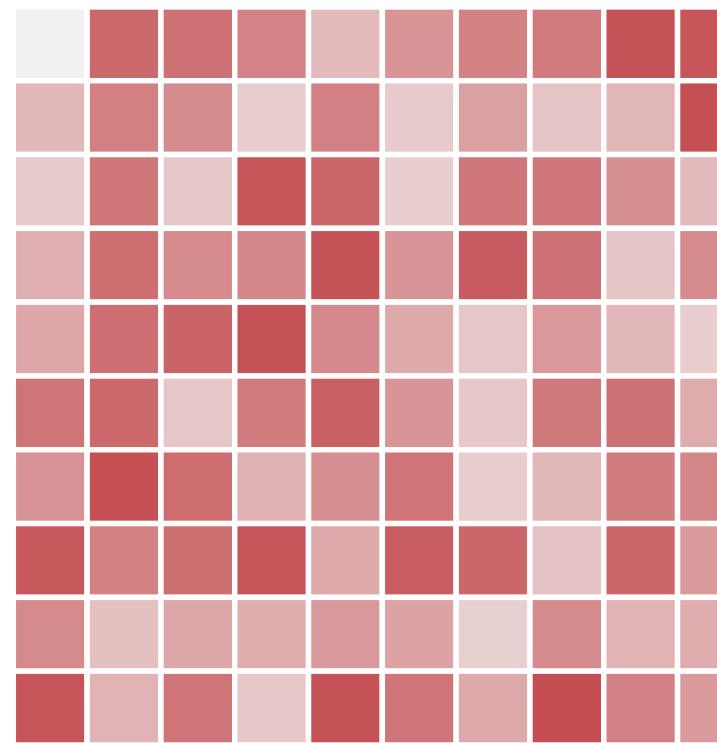
Real valued treatment to each region

Real valued context (socio-economic status) between (0,1)

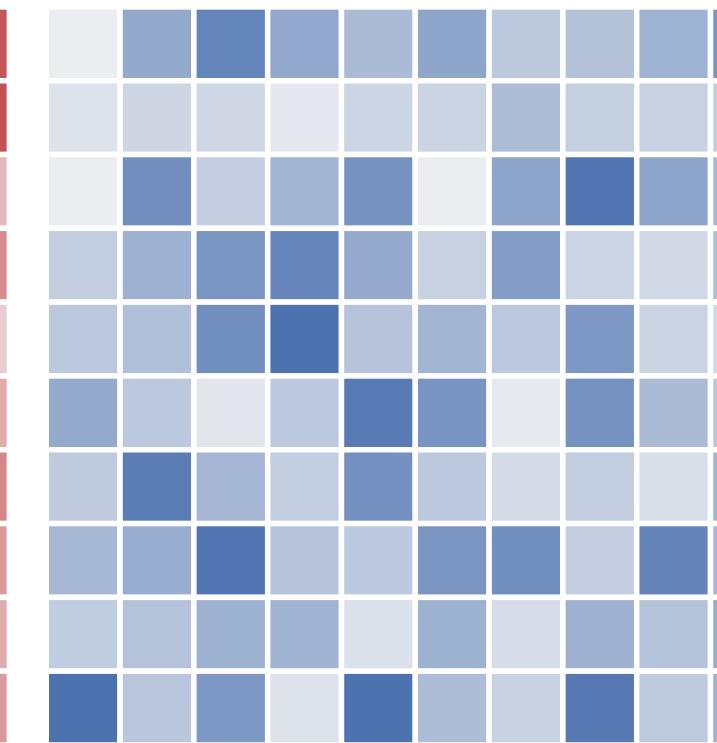
Mean over subregional outcomes

10x10 : Regions
4x4 subregions in each region

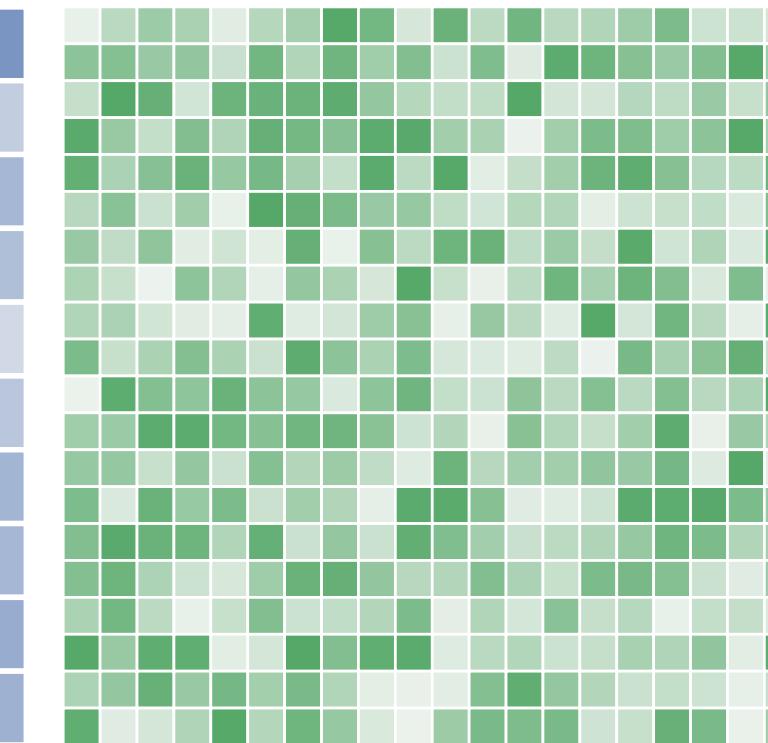
Regional Interventions



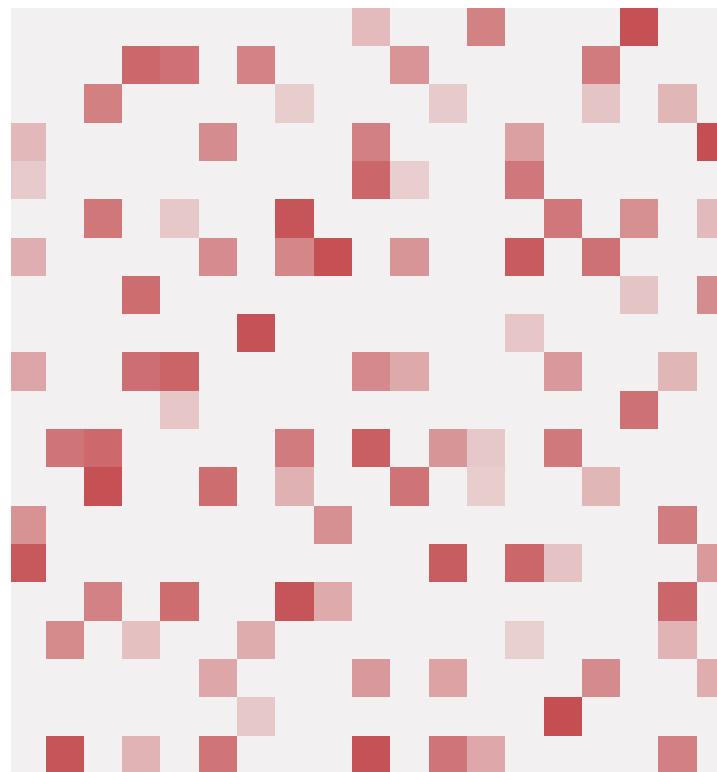
Regional Outcomes



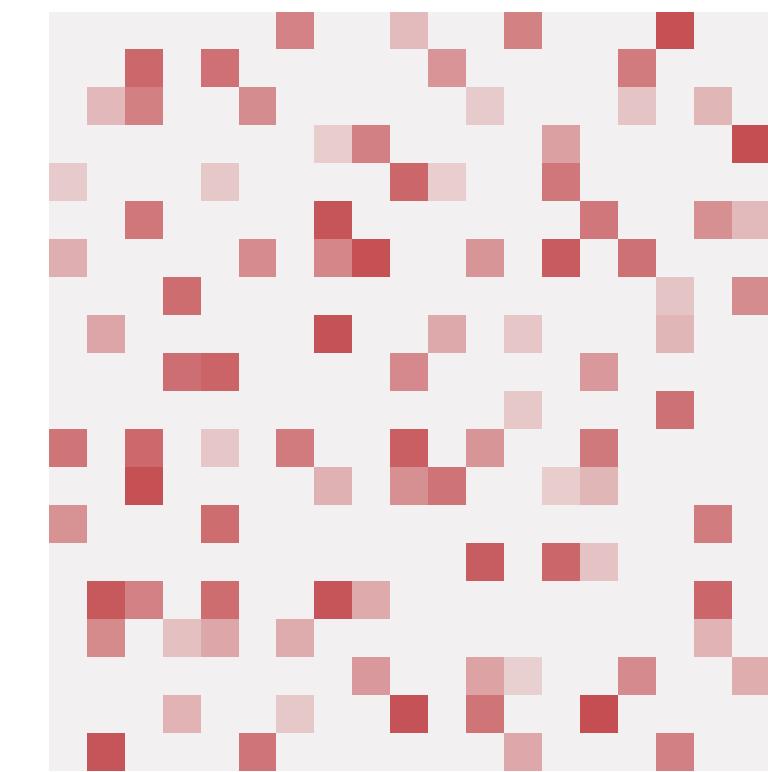
High-Resolution Context



Ground Truth Intervention Locations

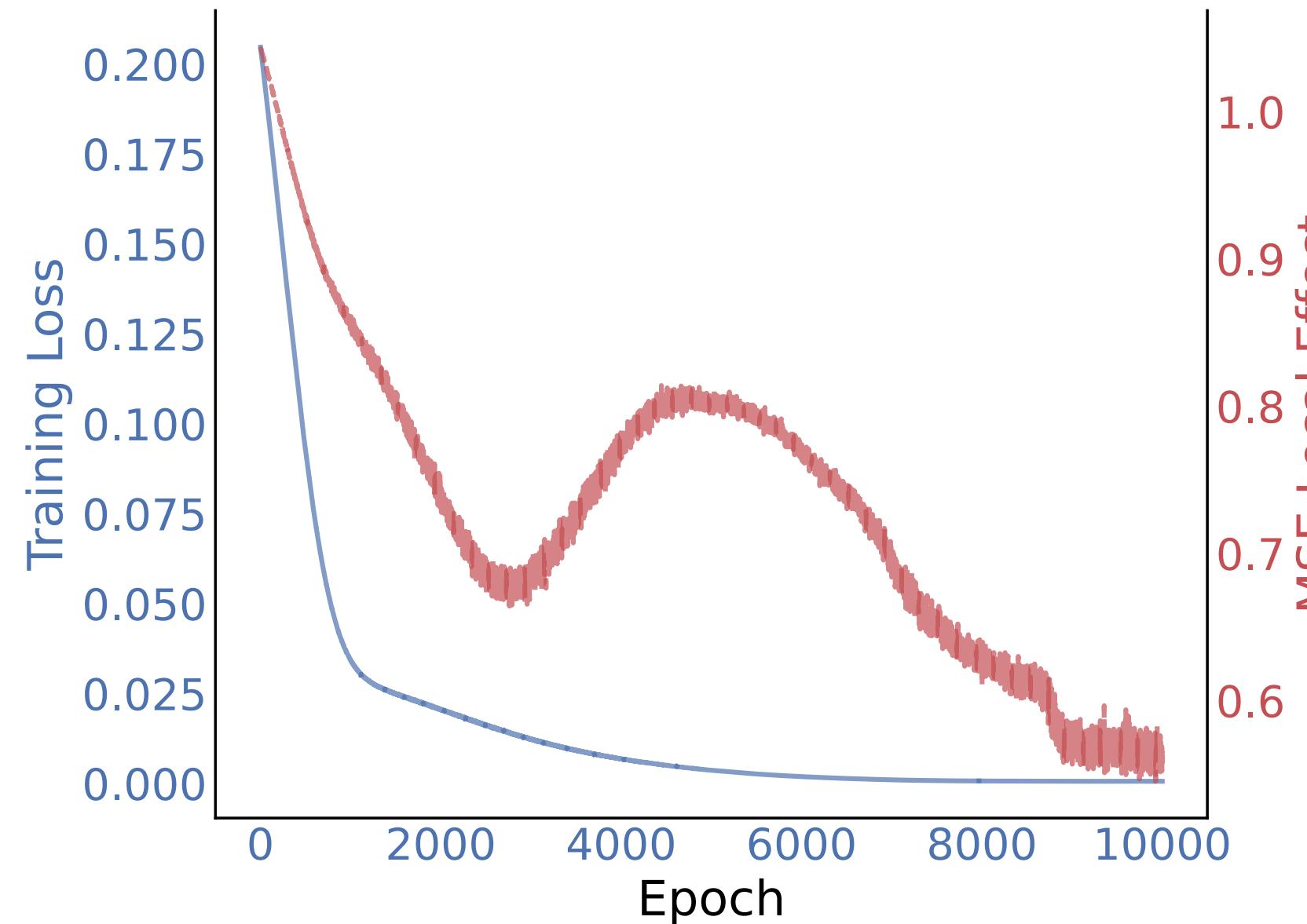


Estimated Intervention Locations

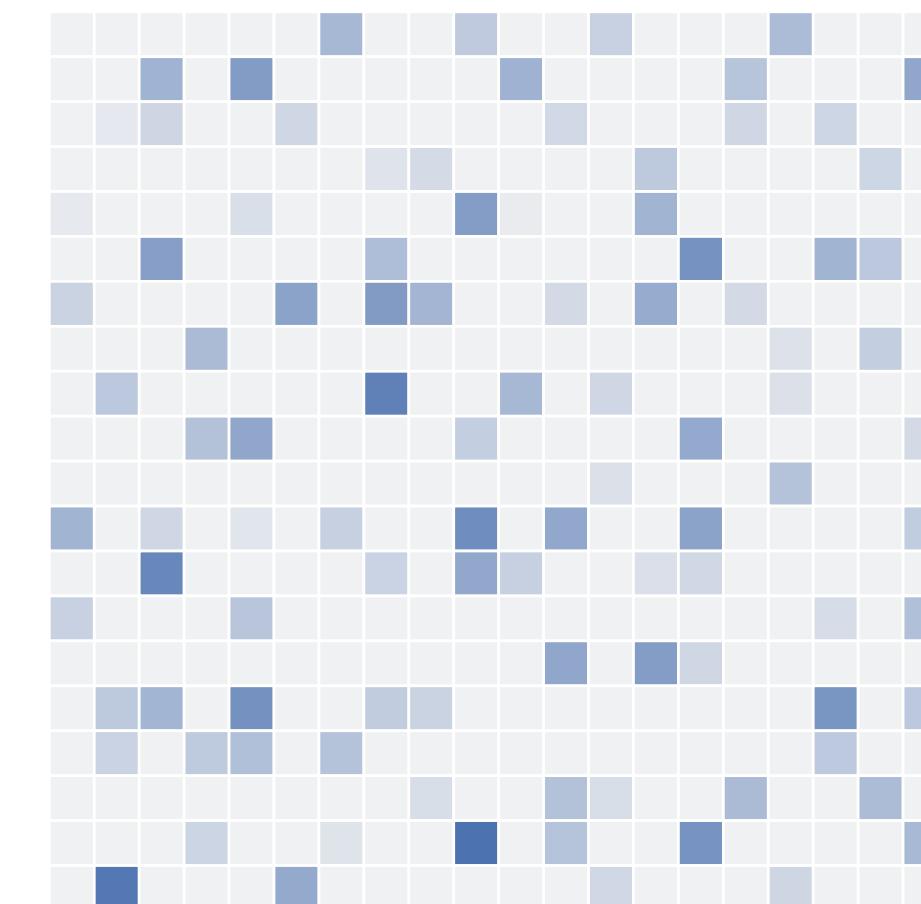


Unknown Intervention Locations

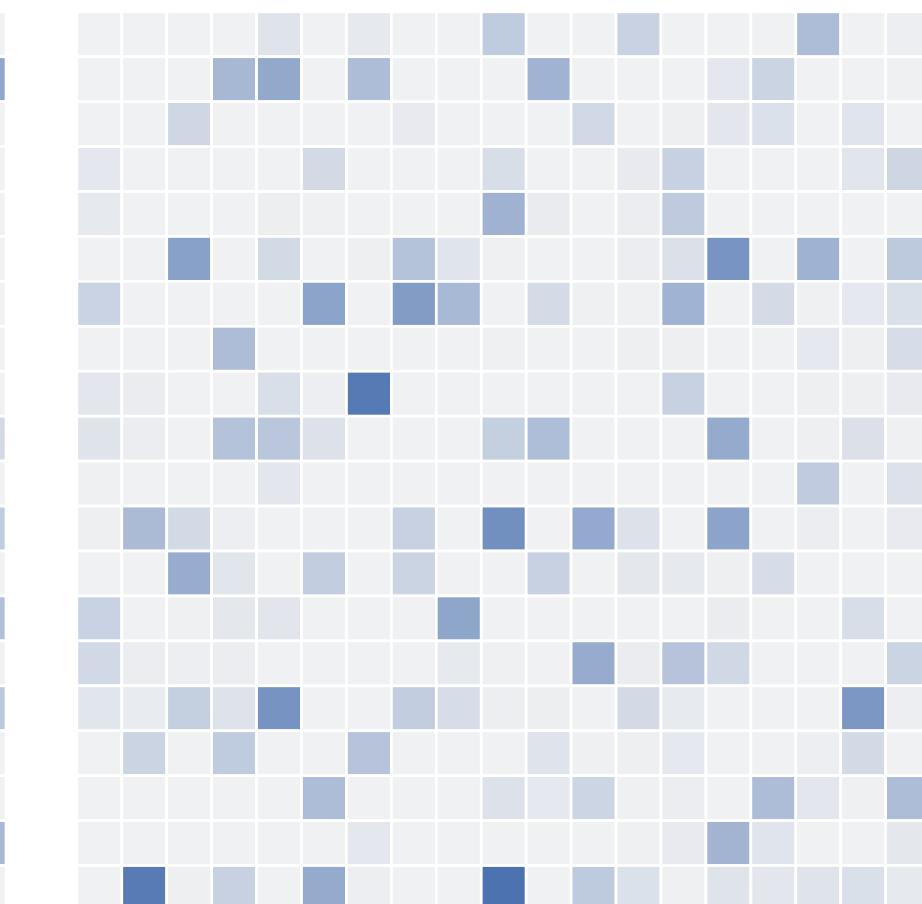
Experiment 2: How does campaigning affect politician performance



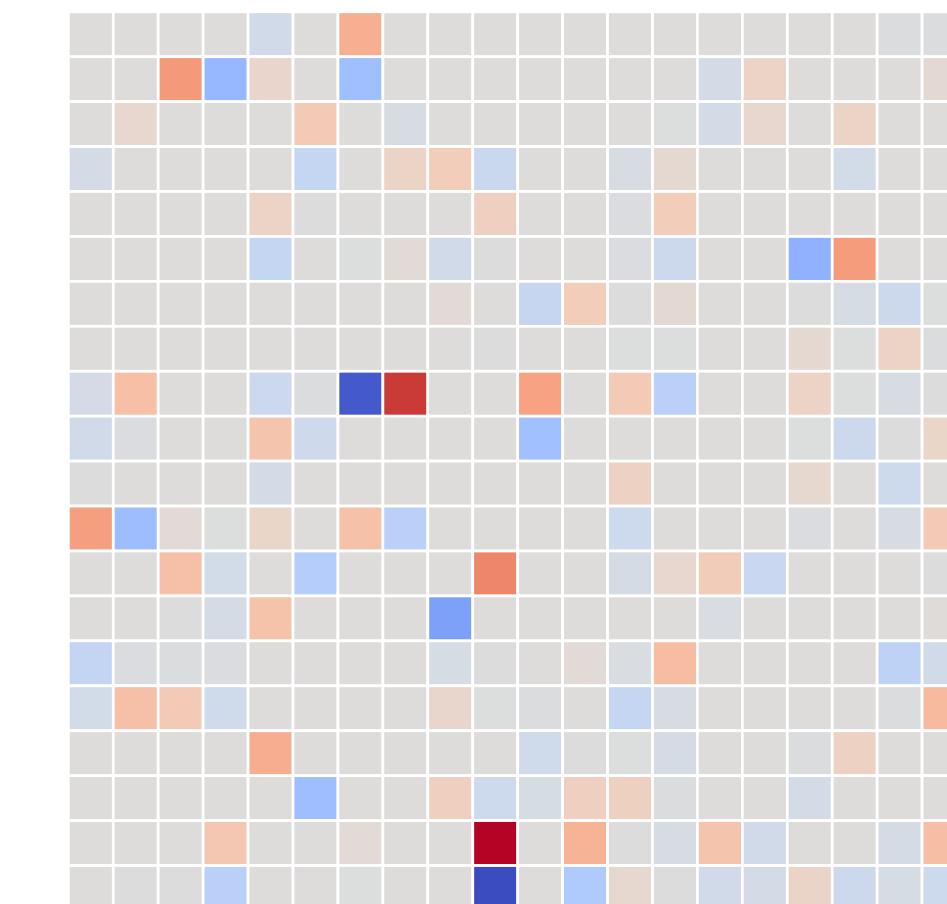
Ground truth
Causal Effect



Estimated
Causal Effect



Estimation Error



$$f_{\theta}(t_{i,j}, c_{i,j}) = (\theta_{\text{shift}} - c_{i,j}) \cdot \theta_{\text{scale}} \cdot t_{i,j}$$

- 400 free parameters 4x100 matrix $\theta_{\text{shift}}, \theta_{\text{scale}}$

Temperature Control softmax over each row
For intervention

Mean aggregate subregions and match effect to regional effect

Hidden Confounding

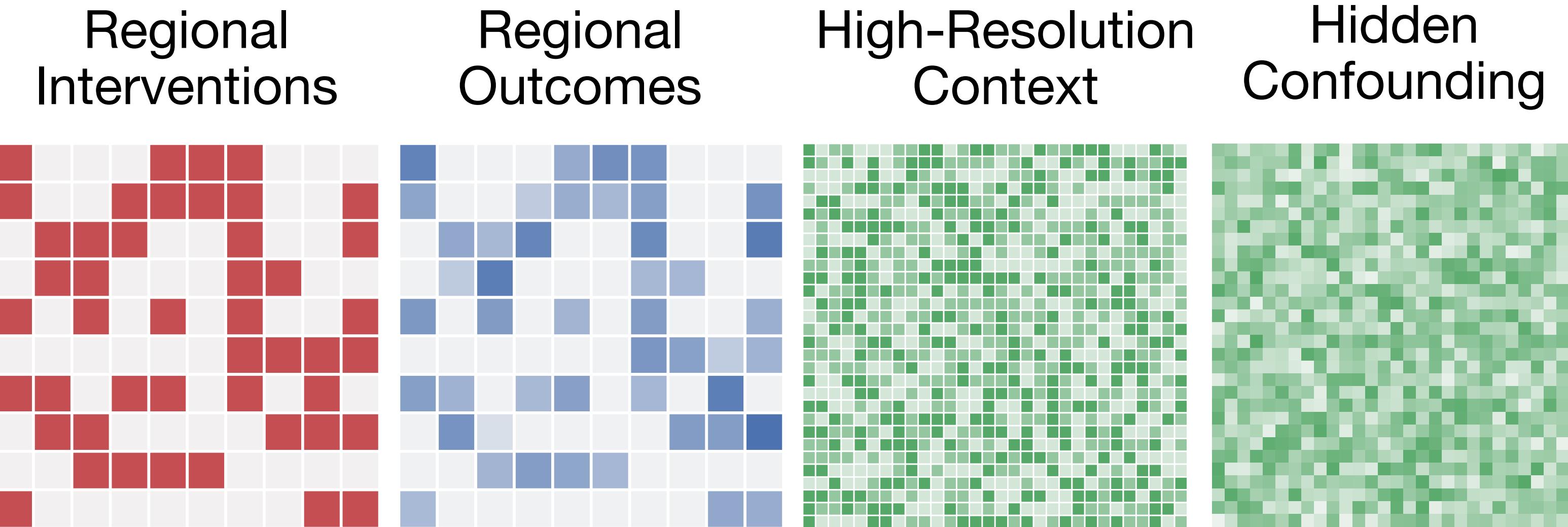
Experiment 3: Extreme heat on educational outcomes

Binary treatment (heatwave or not) to each region for all weeks

Context: High(3), medium(2), low(1) parental education level - slowly evolving over time

Hidden confounding:
Vegetation (0 or 1) static over time

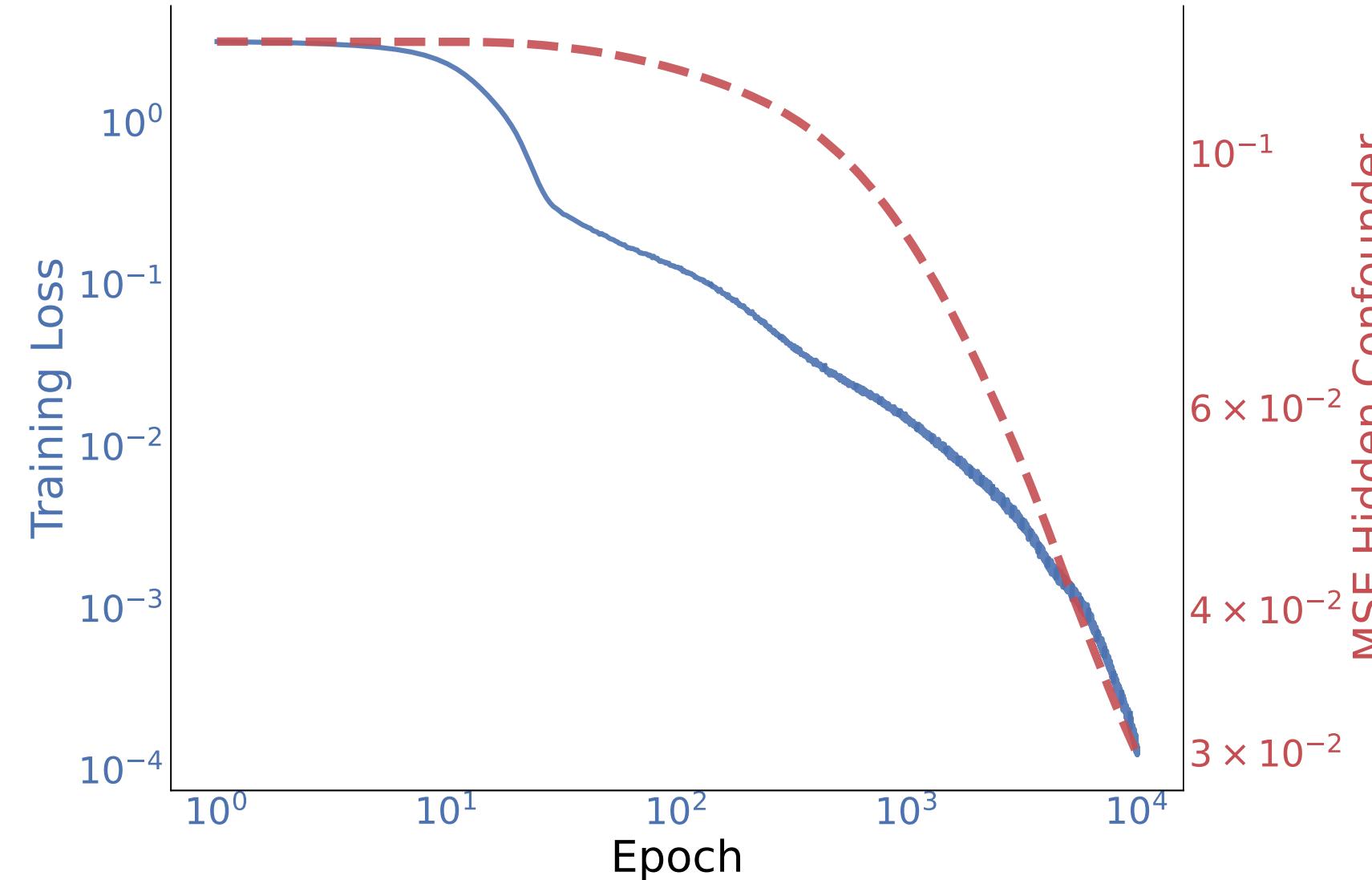
10x10 : Regions
3x3 subregions in each region



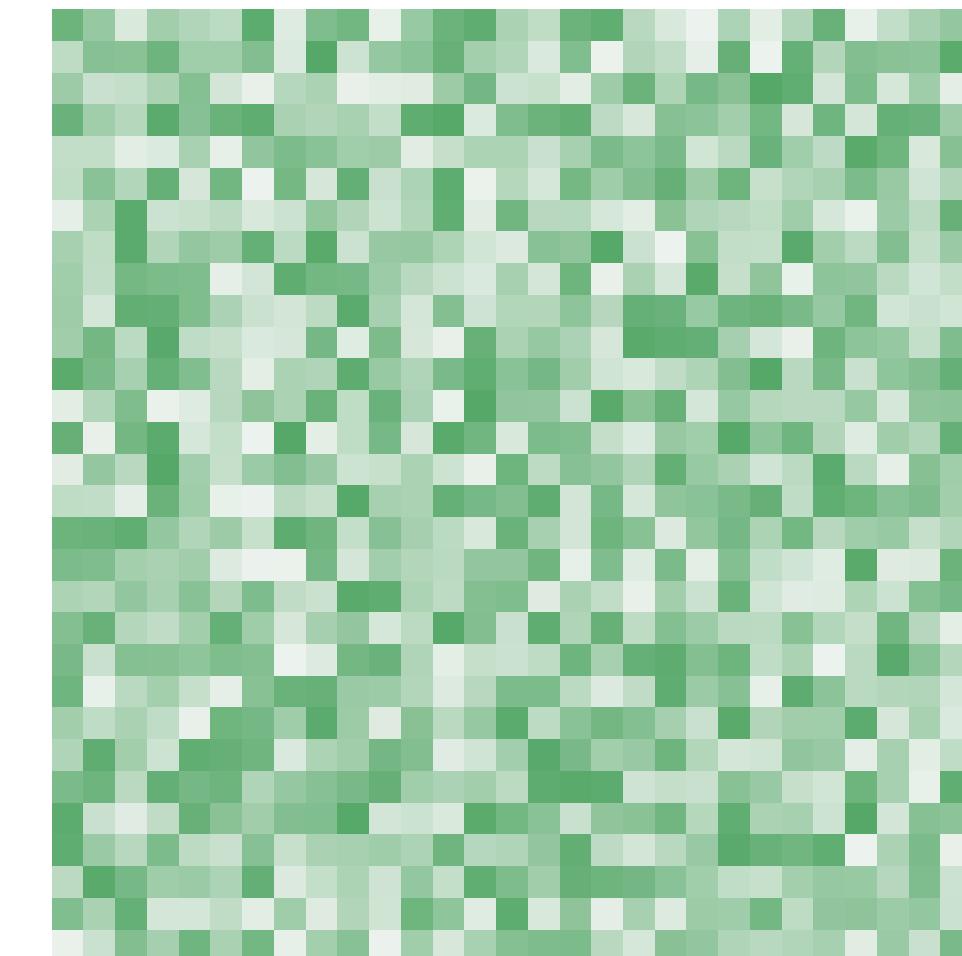
$$f_{\theta}\left(t_{i,j}^{(w)}, c_{i,j}^{(w)}, u_{i,j}\right) = \begin{cases} 0 & \text{if } t_{i,j}^{(w)} = 0, \\ (10 \cdot \mathbb{1}[c_{i,j}^{(w)} = 1] + 5 \cdot \mathbb{1}[c_{i,j}^{(w)} = 2] \\ \quad + \mathbb{1}[c_{i,j}^{(w)} = 3]) \cdot (1 - u_{i,j}) & \text{if } t_{i,j}^{(w)} = 1. \end{cases}$$

Hidden Confounding

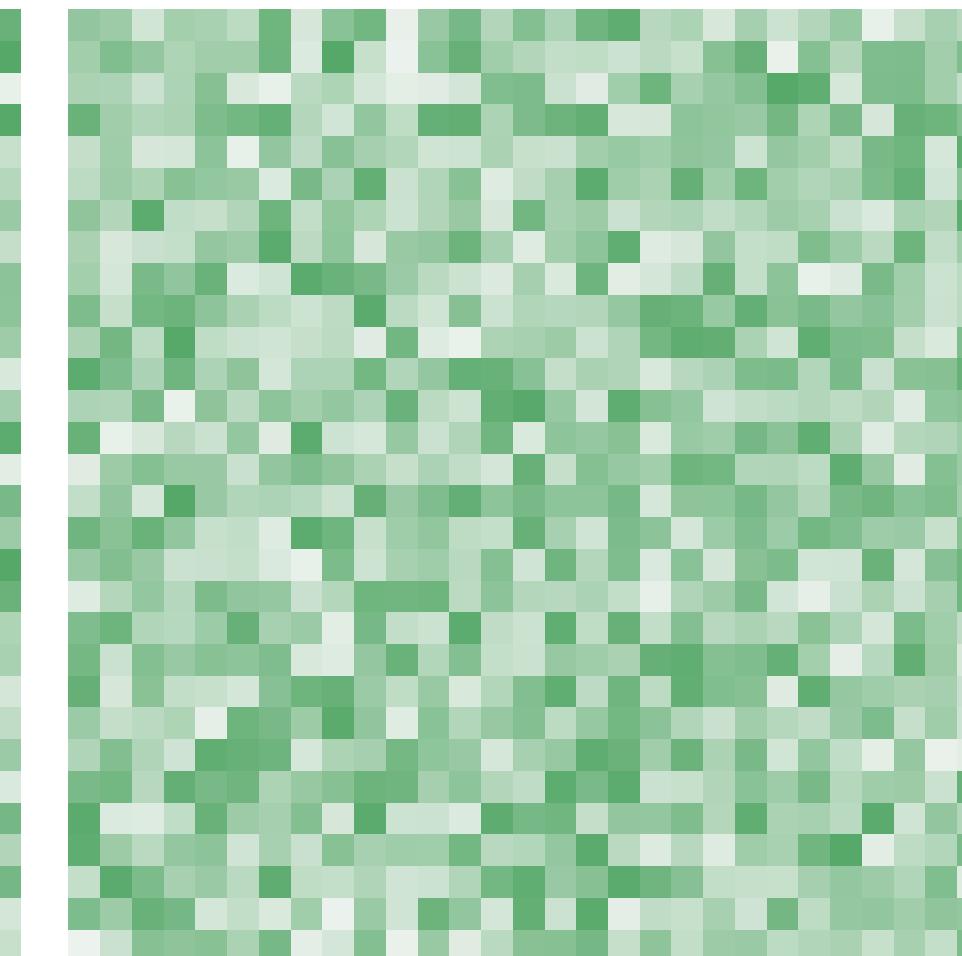
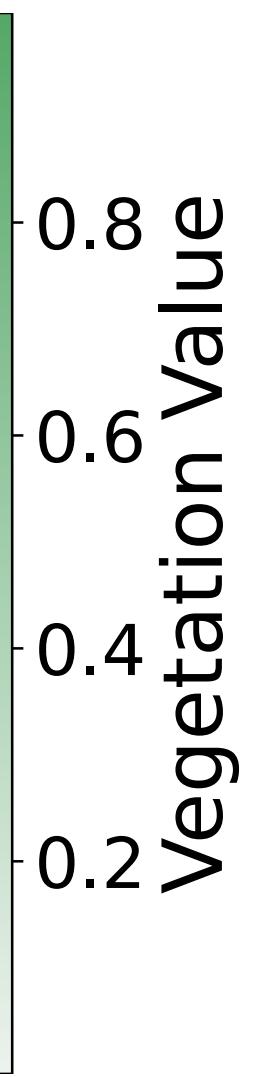
Estimation of hidden confounders



Ground truth hidden
confounders



Estimated hidden
confounders



- Demographic data
- Heatwave or not
- Hidden Confounder estimates

Trainable parameters
are
 θ (neural net params)
and \hat{U} (confounding)

Mean aggregation to
the regional level and
MSE loss

Learning the Aggregation Function

Experiment 4: Driving ban vs air quality

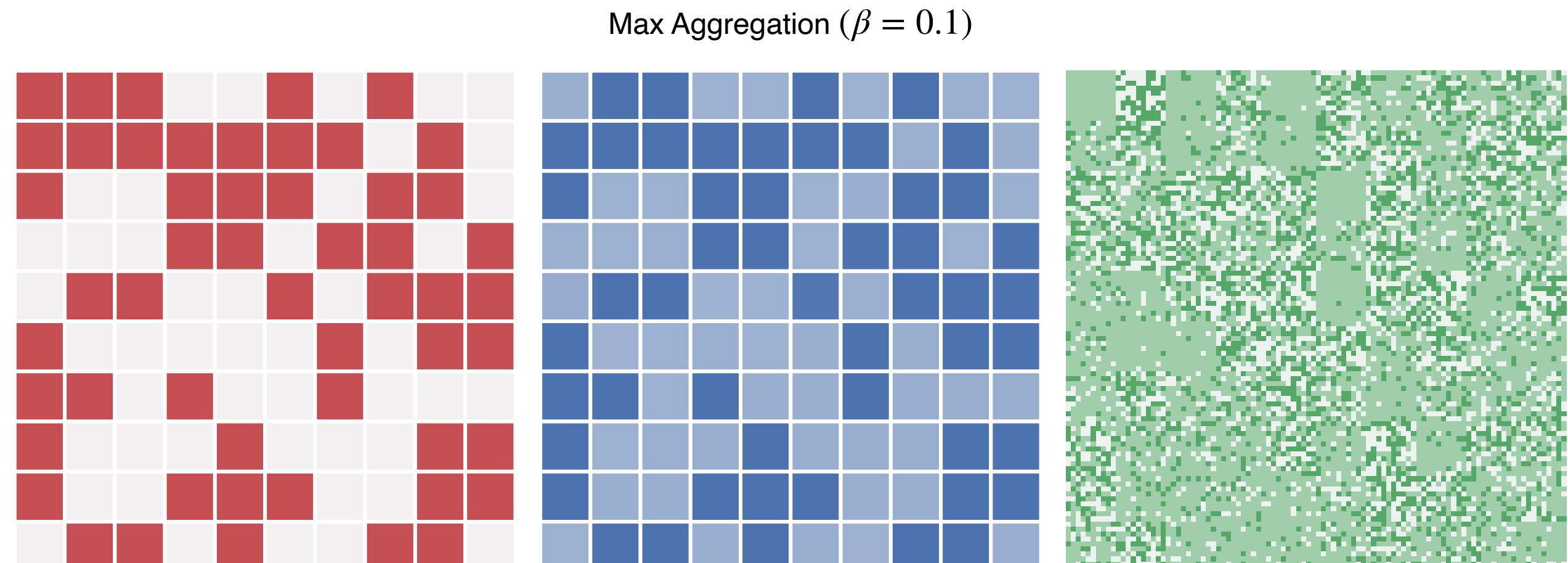
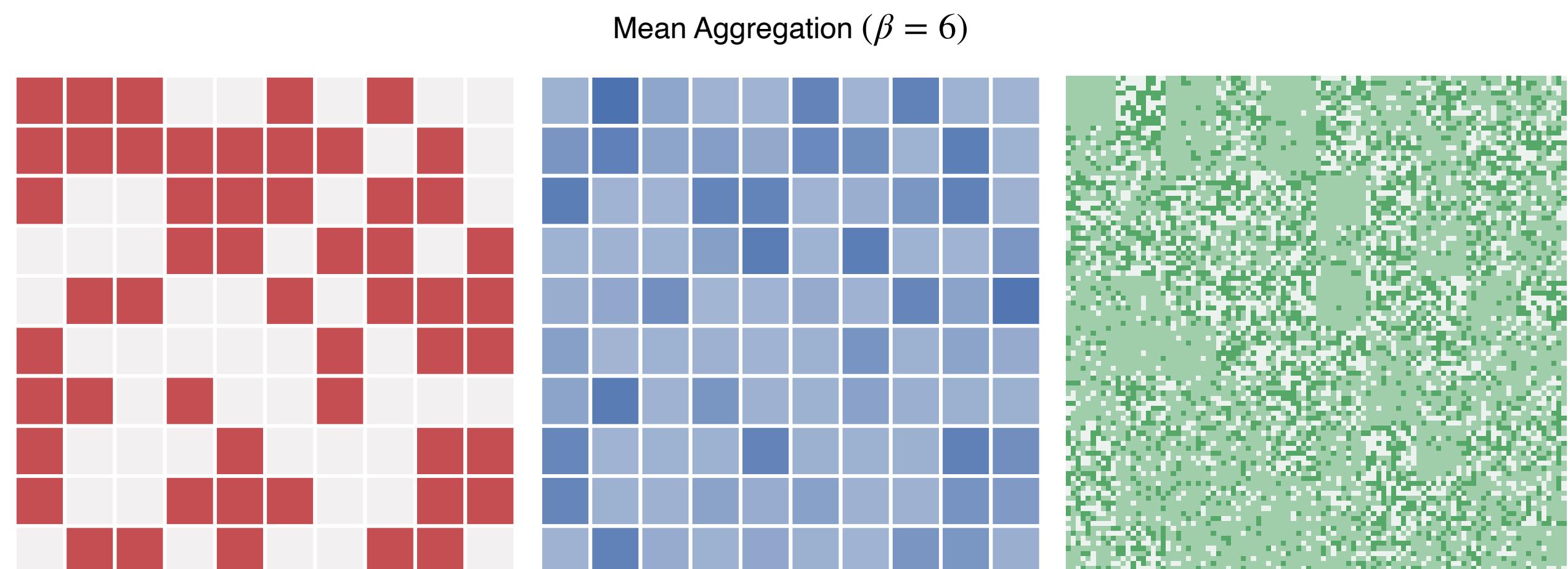
Binary Treatment : Driving ban implemented or not

High resolution context : Vegetation in the region

$$f_{\theta}(t_{i,j}, c_{i,j}) = \begin{cases} 0.0 & \text{if } t_{i,j} = 0, \\ \theta_{\text{base}} + \theta_{\text{veg}} \cdot c_{i,j} & \text{if } t_{i,j} = 1, \end{cases}$$

$$p_{i,j}(\tau) = \frac{\exp(\hat{x}_{i,j}/\tau)}{\sum_{k=1}^M \exp(\hat{x}_{i,k}/\tau)}$$

$$x_i = \sum_{j=1}^M p_{i,j}(\tau) \cdot \hat{x}_{i,j},$$

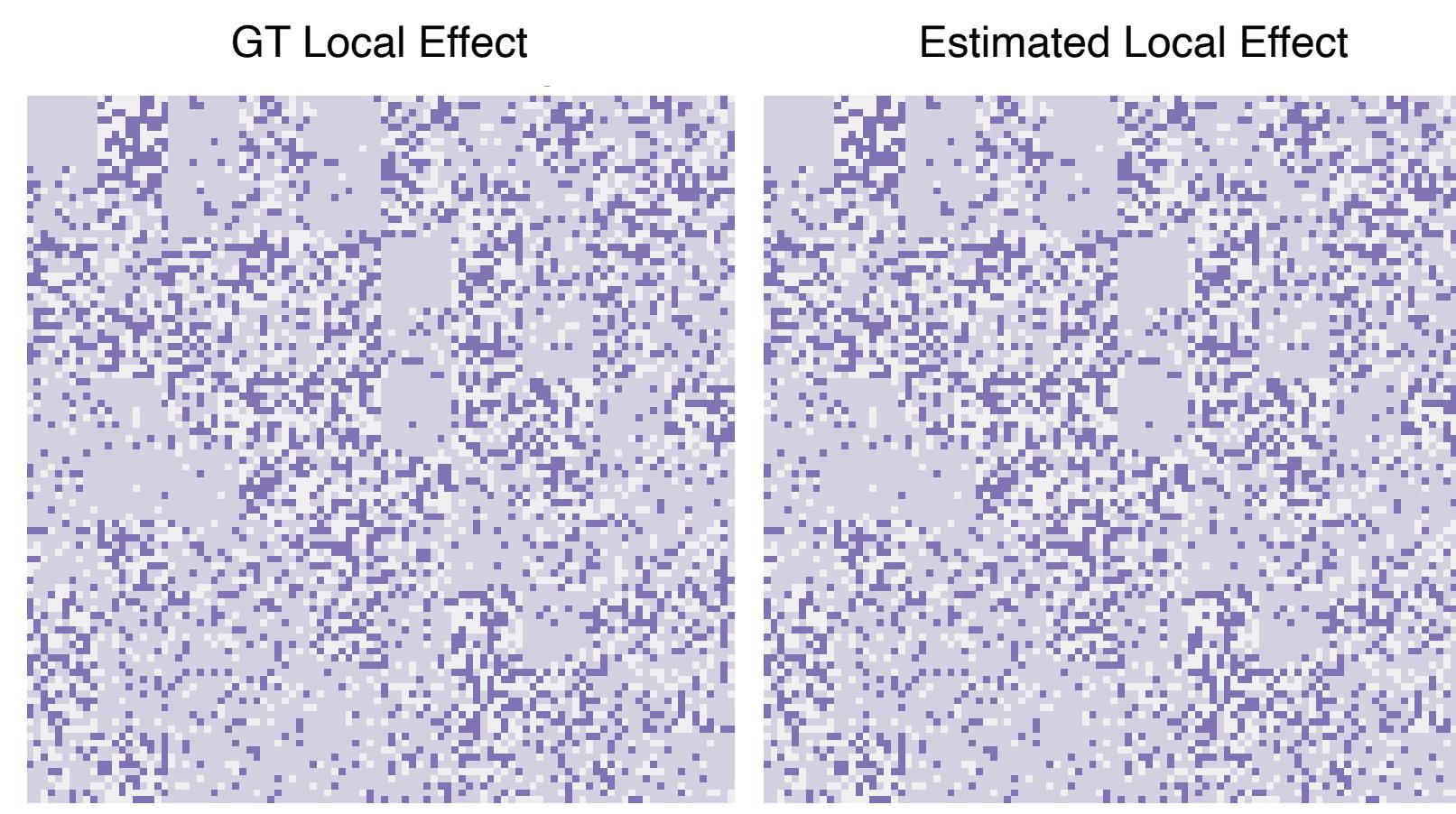
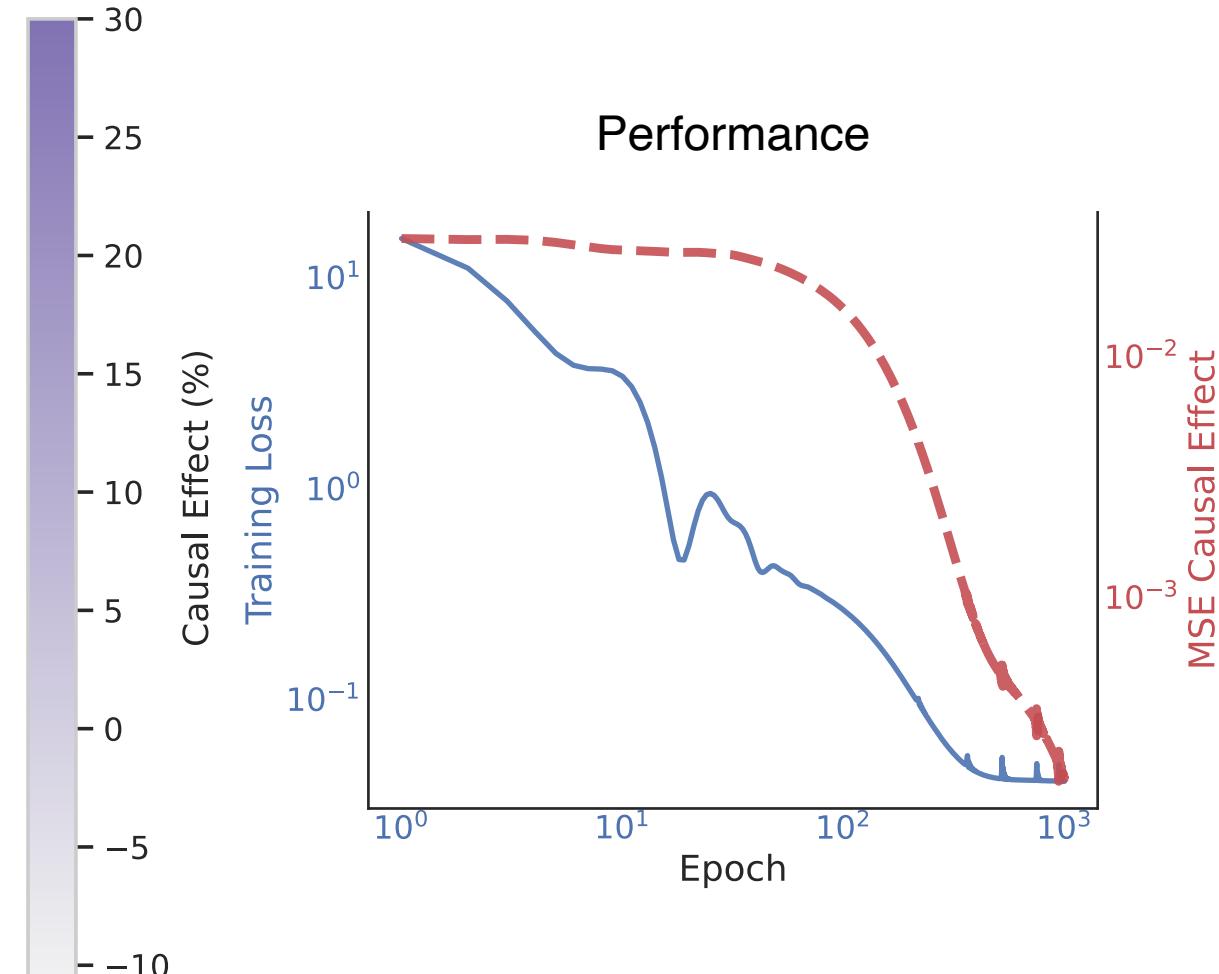


Learning the Aggregation Function

Experiment 4: Driving ban vs air quality

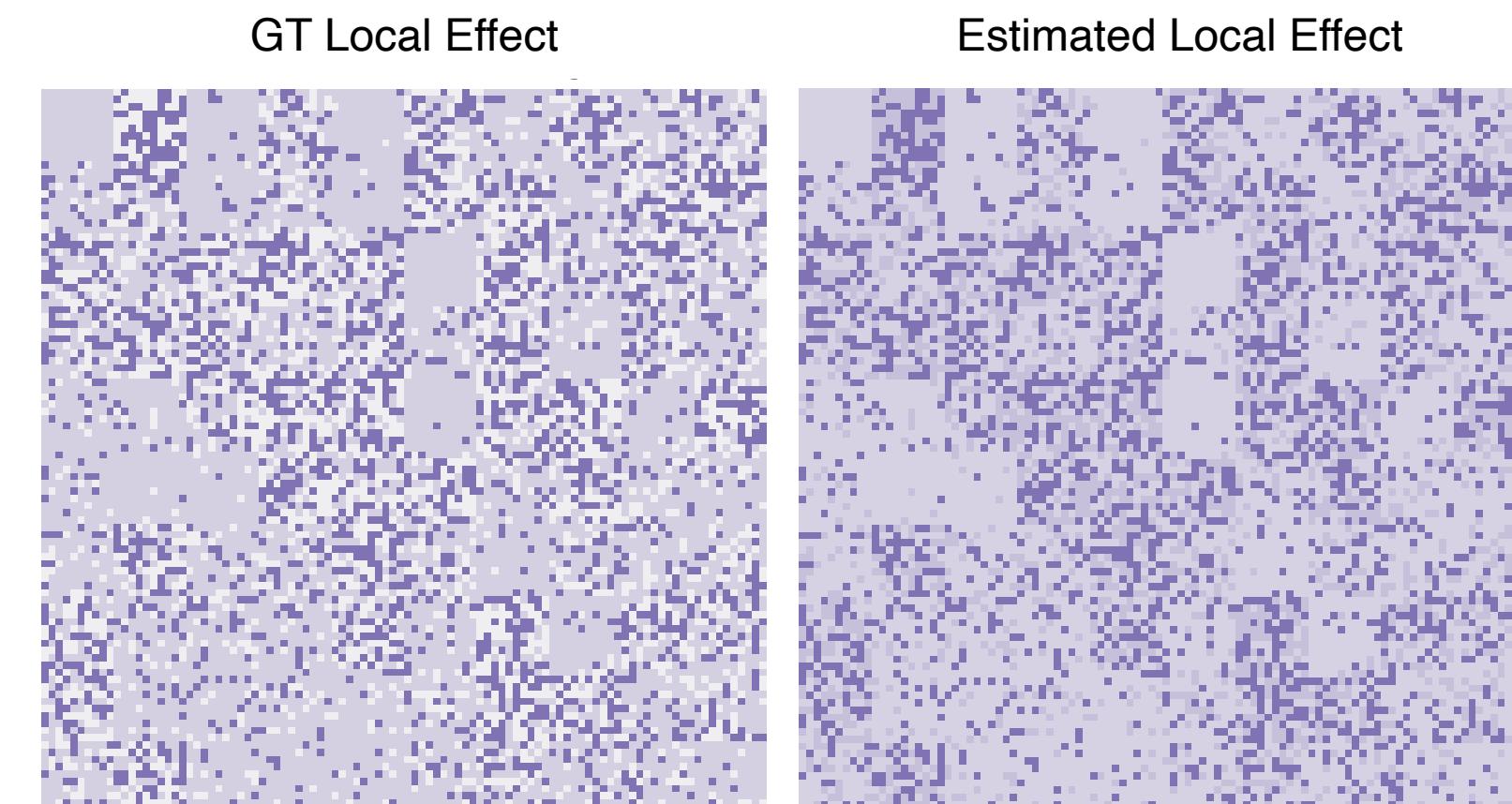
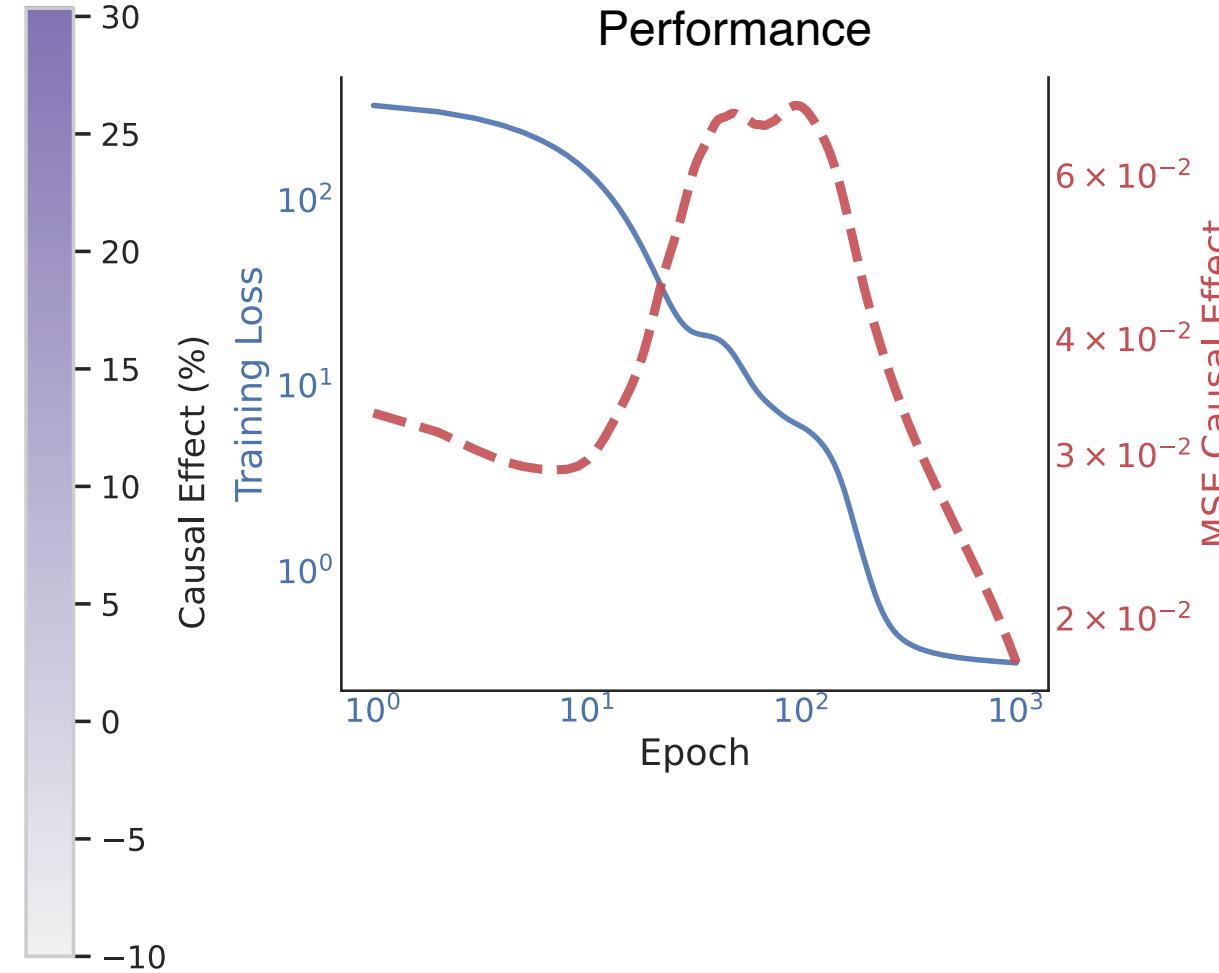
Learnable parameters are θ_{base} , θ_{veg} and τ which controls the temperature of the aggregation

Mean Aggregation



We see for max aggregation retrieval of causal effect for lower-vegetation regions is poor as expected

Max Aggregation



Covariate Dependent Intervention Allocation

Experiment 5: School funding dependent on context

Binary Treatment to each region, with exactly one subregion receiving treatment

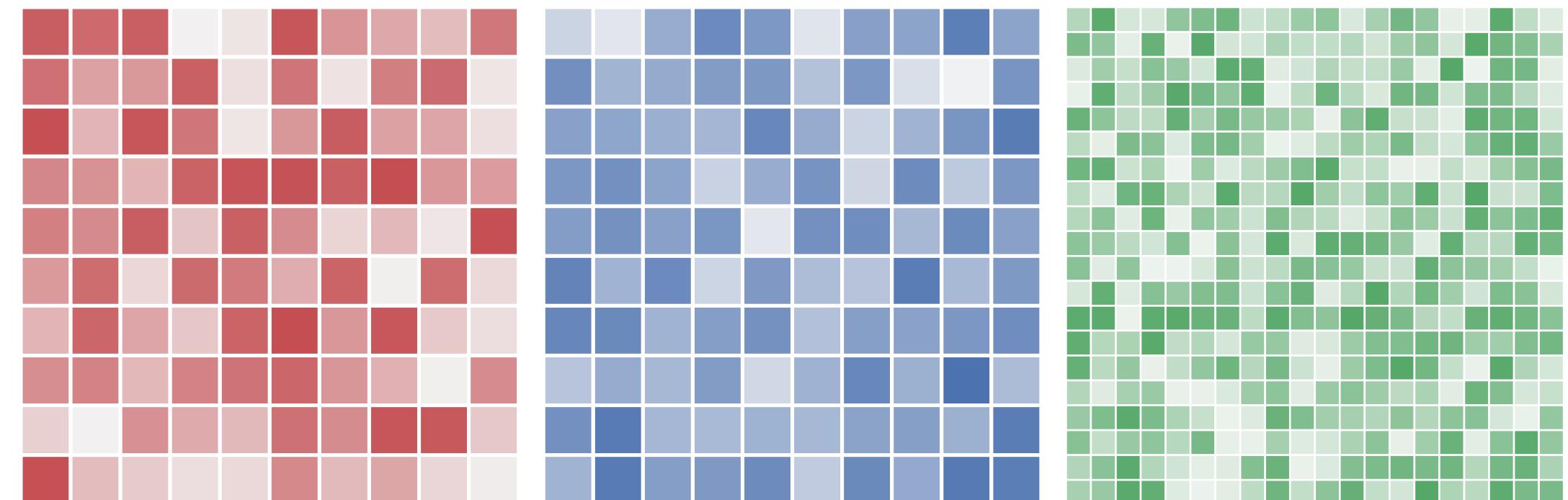
Real valued b/w (0,1) high dimensional sub-region context

$$p_{i,j} = \frac{\exp(\ell_{i,j})}{\sum_{k=1}^M \exp(\ell_{i,k})}.$$

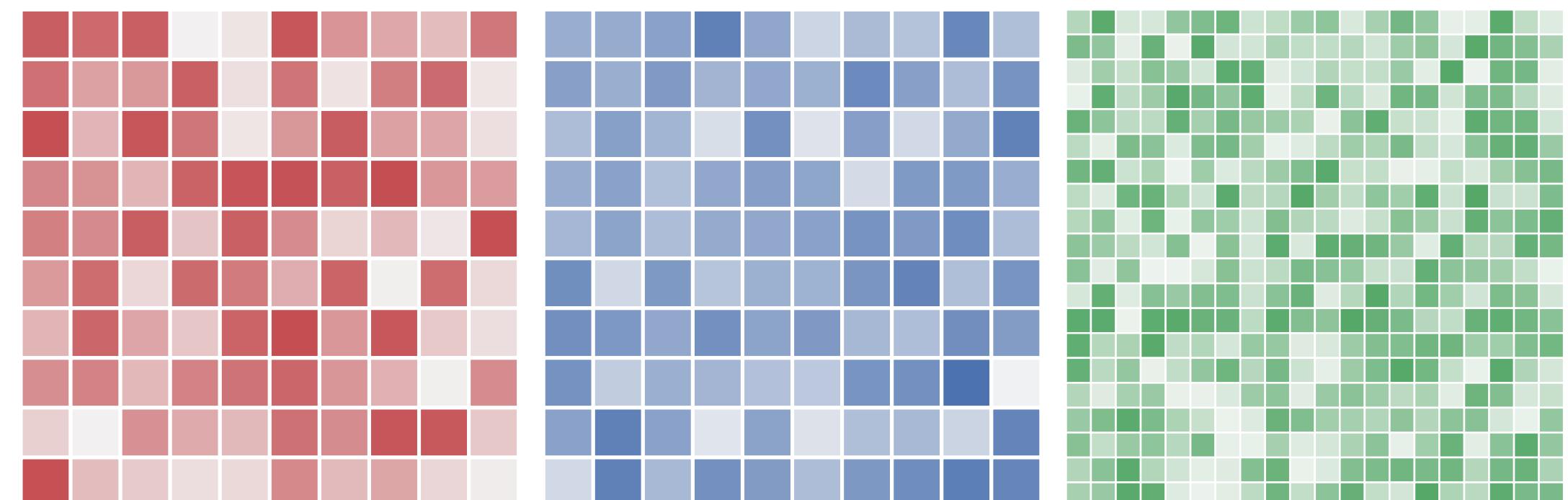
$$j^* \sim \text{Categorical}(p_{i,1:M})$$

And treat selected region

Low Confounding ($\tau = 1$)



High Confounding ($\tau = 0.1$)



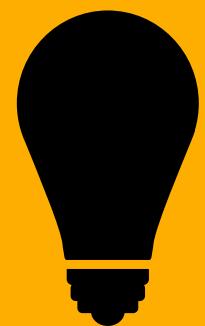
Covariate Dependent Interventions

Experiment 5: School funding dependent on context



Learnable parameters are θ_{base} , θ_{soc} and τ_{conf} which controls the amount of confounding

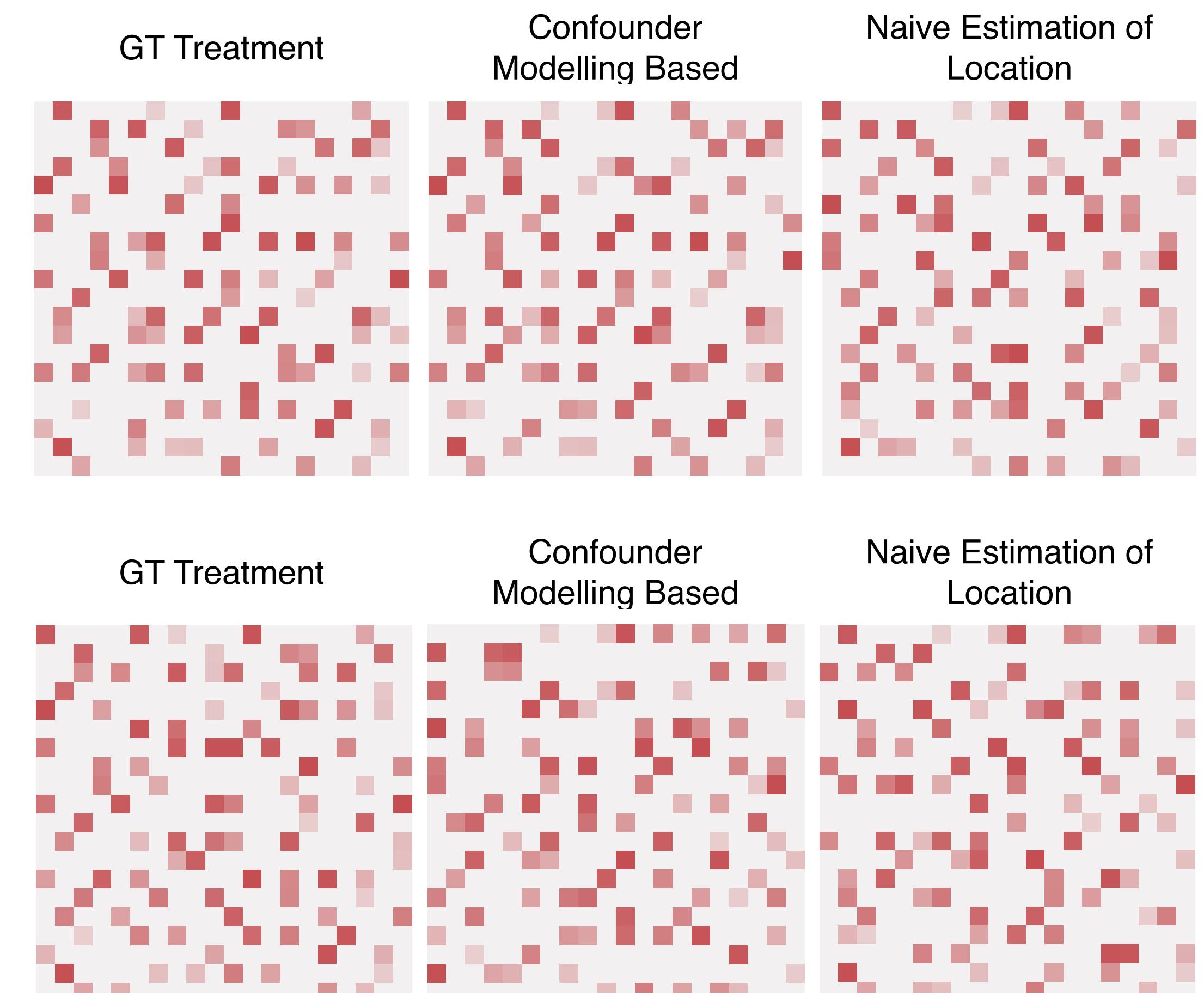
We see that the retrieval of the location for high confounding is much better when we model confounding



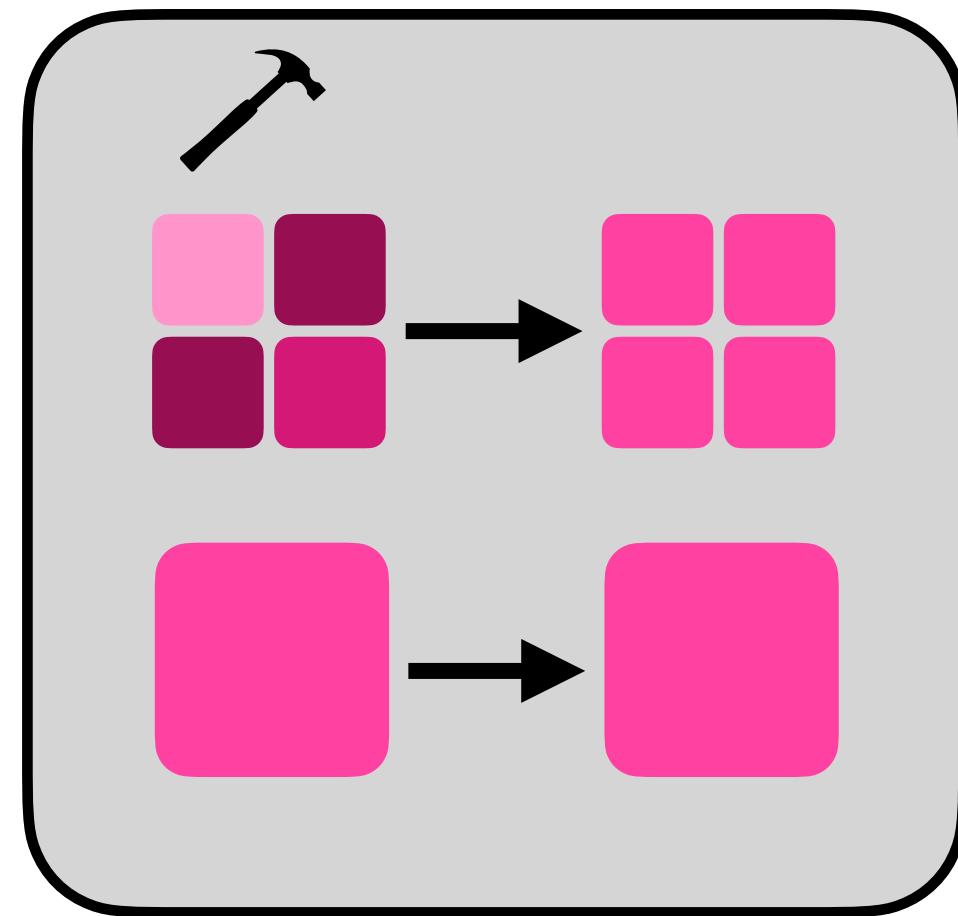
We see that the retrieval of the location for low confounding is similar in both methods

High
Confounding

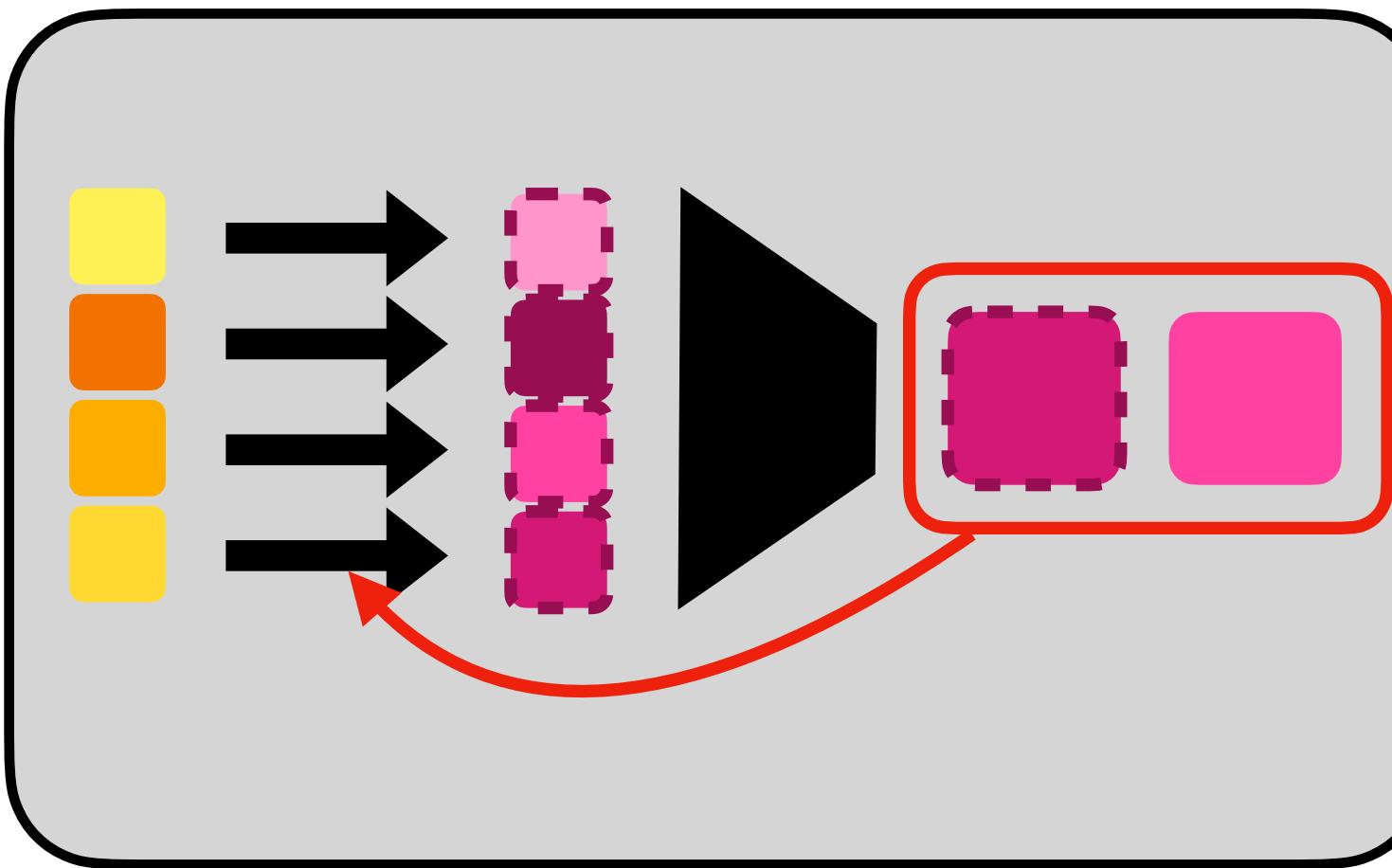
Low
Confounding



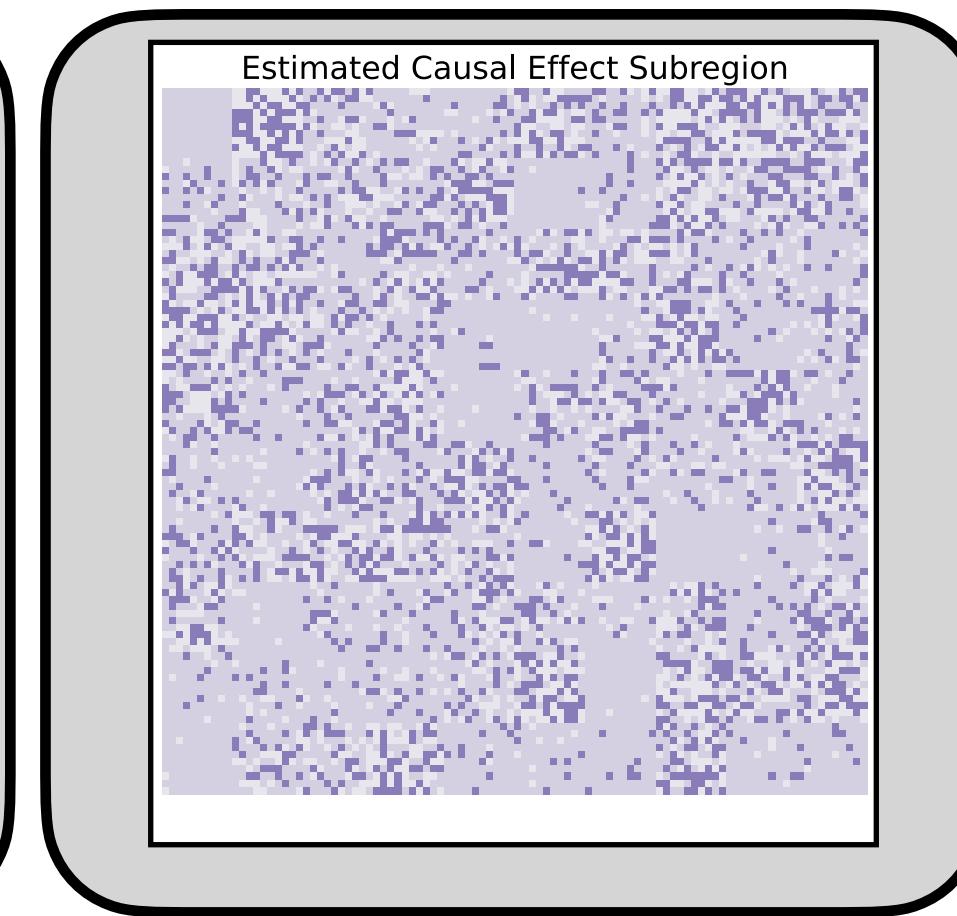
Summary



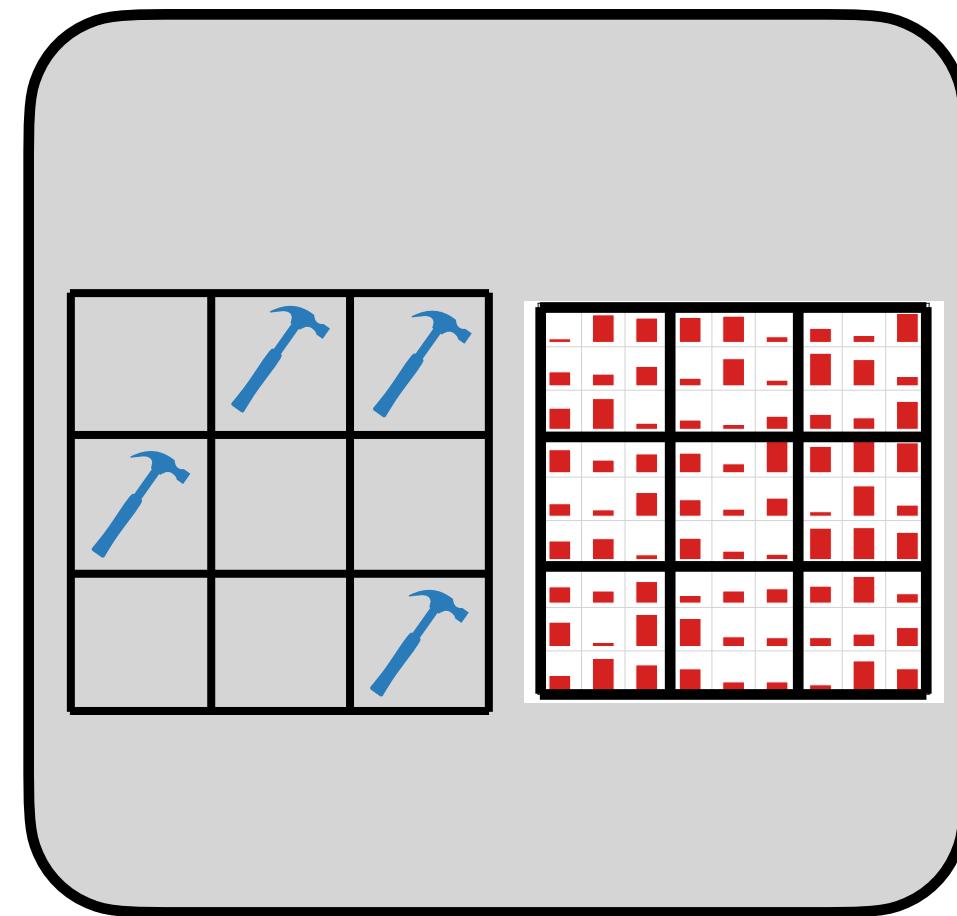
Aggregated causal data
-incorrect conclusions



Learn true causal effects- using
high resolution covariates



Predict localised causal
effects of policy



Generate counterfactuals
- plan better policies

Feedback and Questions?