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From Coarse to Fine Grained

Statistical downscaling / super resolution

Given state voting outcomes, can we
estimate results at the district level?

Can daily satellite temperature data

estimate hourly surface temperature
for specific location?

Given state level education scores,
can we estimate school level
performance distributions?




Statistical Downscaling

Refining low resolution observations using high resolution information
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Statistical to Causal Downscaling

Learning local causal mechanism from aggregated data

Given regional voting outcomes, can
we estimate results at sub-regional
level?

Can daily satellite temperature data

estimate hourly surface temperature
for specific location?

Given state level education scores,
can we estimate school level
performance distributions?

How does regional level air quality
policies affect street level pollution?

How do national vaccination
campaigns affect local infection rates
across villages?

How do district-level education
reforms translate into classroom-level
learning outcomes?




Causal Disaggregation

Learning the true underlying causal effects

Voter turnout Voter turnout after advertisement

Standard Disaggregation Subregion Causal Effect Positive Effect

e 2 B me x g

Income

e @ _ O o Effoct
Moderate
Income Moderate . I .
=ee| 0
Negative Effect

Aggregated Causal Effect
| od

. .




Sub-regional outcomes from regional policy

How does political campaigning affect politician performance?

Intervention Regional High-Resolution  Sub-regional Causal effect
Locations Outcomes Context output output

We intervene (political The subregions of the
campaigning) in some intervened regions have
— regions — different effects

We observe (political
performance) in all

— regions




Causal Graph for a Region
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Aggregation

All functional
relationships are
shared among the

subregions b

The outcome of the
treatment depends on
subregional context

Aggregation can be

something like mean,
max or sum




Motivating Example

Drought and food prices

A

Different kinds of V' . Aggregated
subregions 4»9: Population Price Increase

Irrigated Farmland 2% x 5M

Rain-Fed Agriculture . x 3M
Urban Region 3% x 10M

In this example, we look at the effect of drought on food prices in different
subregions. Some regions are affected severely while other regions relatively less.




Examples of Intervention and Covariates

Policies are often implemented on an aggregated level
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The ldea Behind Our Method

Predict high resolution and then aggregate
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Applications of Causal Deabstraction

Allocating resources for the greatest impact

Education

Vaccination Election Disaster

Drives Campaigns

Budget

Allocation Relief




Political Campaigning
Experiment 1 : How does campaigning affect politician performance

Intervention Regional High-Resolution
Locations Outcomes Context
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Political Campaigning

Experiment 1 : How does campaigning affect politician performance

Performance
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Ablation Study on Experiment 1

Effect of varying intra-region heterogeneity

Low variability across
regions - results in
underdetermination of the
Inverse problem

High dimensional
contextual covariates at
the subregion level can

help
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Unknown Intervention Locations

Experiment 2: High school funding vs educational outcomes
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Unknown Intervention Locations

Experiment 2: How does campaigning affect politician performance

Ground truth Estimated N
Estimation Error
0500 Causal Effect Causal Effect SHMato 0
0.175 HO
,, 0.150 0.9 9
30.125 . T
CEDO].OO l’ ||||‘| “” 08§ = » —+
©0.075 \ .!' \ "
= - 'l 0.7
0.050 I'l =
0.025 “"l' 0.6
0.000 o . O n
0 2000 4000 6000 8000 10000 - - - -
Epoch
400 tree Temperature Control Mean aggregate
parameters 4x100 softmax over each ||subregions and match
Jo(t; i Ci. j) = (Hshift — ¢ j) Oscale -t j matrix row effect to regional

eshifta Hscale For intervention effect




Hidden Confounding

Experiment 3: Extreme heat on educational outcomes

Binary treatment (heatwave or Regional Regional High-Resolution
hot) to each region for all Interventions Outcomes Context
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Hidden Confounding

Estimation of hidden confounders
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Experiment 4: Driving ban vs air quality

Binary Treatment : Driving ban implemented
or not

High resolution context : Vegetation in the
region

Learning the Aggregation Function

Max Aggregation (f = 0.1)
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Learning the Aggregation Function

Experiment 4: Driving ban vs air quality
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Covariate Dependent Intervention Allocation

Experiment 5: School funding dependent on context
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Covariate Dependent Interventions

Experiment 5: School funding dependent on context
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Estimated Causal Effect Subregion
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Aggregated causal data Learn true causal effects- using Predict localised causal = Generate counterfactuals
-iIncorrect conclusions high resolution covariates effects of policy - plan better policies

Feedback and Questions?



