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Motivation

Increasing availability of unstructured data in social sciences
don’t come in a nice matrix form↭ survey, official statistics
text, images, audio, video, etc.

How should we draw causal inference from these new types of data?

Causal inference with spatio-temporal data
a time series of maps as data
treatment and outcome event locations in a continuous space
applications: crime, disease, disasters, pollution, etc.

Methodological challenges
1 spillover effects over space
2 carryover effects over time
3 infinitely many possible treatment and outcome locations

Current practice
1 arbitrary discretization of space
2 strong assumptions about spillover and carryover effects
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Contributions

Causal inference with spatio-temporal data
impossible to estimate causal effects of each treatment event

unrestricted spillover and carryover effects
probability of each treatment realization is zero ⇝ lack of overlap

stochastic intervention based on the distribution of treatments

Causal estimands under stochastic intervention
expected number of outcome events within a region of interest
various stochastic interventions

1 change the dosage while keeping the distribution identical
2 change the distribution while keeping the dosage constant
3 intervention over multiple time periods

The proposed methodology can estimate:
average treatment effects
heterogeneous treatment effects
causal mediation effects

Empirical application: airstrikes and insurgent violence in Iraq
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Impacts of Airstrikes on Insurgent Violence in Iraq

Airstrikes as a principal tool for combating insurgency in civil wars

Three ongoing debates:
1 overall effectiveness: do airstrikes reduce subsequent insurgent attacks?
2 heterogeneous effects: what factors moderate effects of airstrikes?
3 causal mechanisms: does civilian casualty mediate effects of airstrikes?

American air campaign in Iraq:
declassified USAF data from Feb. 2007 to July 2008 (“surge” period)
date and precise geolocation for

airstrikes: aircraft type, number and type of bombs
insurgent attacks: small arms fire, improvised explosive devices

location of US and UK military units
weekly, district-level
troop density: soldiers per 1,000 residents
troop type: US Marines, US Army, and UK Army
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Data: Airstrikes, Insurgent Attacks, Civilian Casualties
Airstrikes Insurgent attacks

civilian casualty data
Total: 151,000 (Iraq family health survey), 200,000 (Iraq Body Count)
Use of satellite imagery to classify targets of airstrikes

civilian: residential compounds and settlements
non-civilian: other buildings, farms, roads, unpopulated areas, others
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Methodological Overview

Designing stochastic interventions

Modeling 

spatial distributions

Designing stochastic  
interventions

Spatiotemporal  
(microlevel) data

Obtaining causal effects

Integration of differences in 

outcome surfaces 

Integrating the outcome 
surface gives the expected 
number of outcome events.

Outcome surfaces

Stochastic interventions 
over multiple time periods 

Intervention 1

Intervention 2

time t-3 time t-2 time t-1

Take the dif. &

average over time Causal 

effects

1 Model treatment assignment mechanism
2 Design stochastic interventions of interest
3 Estimate the counterfactual outcomes and average them over time
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The Setup

T time periods: t = 1, 2, . . . ,T
Treatment variable

Ω: set of all possibly infinite locations that can receive the treatment
Wt(s) ∈ {0, 1}: binary treatment indicator for location s at time t
Wt = {Wt(s) : s ∈ Ω} ∈ W: treatment location map at time t
SWt = {s ∈ Ω : Wt(s) = 1}: set of treatment-active locations at time t
W t = (W1,W2, . . . ,Wt): observed treatment history up to time t

Outcome variable
Yt(s), Yt , and Y t can be similarly defined
Potential outcome: Yt(w t) where wt ∈ W is a realized treatment and
w t = (w1,w2, . . . ,wt) ∈ W t is a treatment history realization at time t
Observed outcome: Yt = Yt(W t)
SYt(w t): set of outcome-active locations under treatment history w t

History of all potential outcomes up to time t:
Y t = {Yt′(w t′) : w t′ ∈ W t′ , t ′ ≤ t}

Time-varying confounders: Xt , X t , Xt(w t−1), and X t
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Causal Estimands

Stochastic intervention: any distribution of treatment can be used
We consider Poisson point process Fh with intensity function h

Expected number of outcome-active locations in region B at time t
under stochastic intervention Fh conducted at time t

NBt(Fh) =

∫
W

NB(Yt(W t−1,wt))dFh(wt)

Further average this quantity over time:

NB(Fh) =
1
T

T∑
t=1

NBt(Fh)

We can compare the different interventions:

τB(Fh′ ,Fh) = NB(Fh′)− NB(Fh)
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Stochastic Intervention over Multiple Time Periods

Consider a non-dynamic stochastic intervention over L time periods

Fh = Fh1 × · · · × FhL where h = (h1, h2, . . . , hL)

Expected number of outcome-active locations in region B at time t
under stochastic intervention Fh conducted from time t − L+ 1 to t

NBt(Fh) =

∫
W
· · ·

∫
W

NB(Yt(W t−L,wt−L+1, . . . ,wt))

dFhL(wt−L+1) · · · dFh1(wt)

Average this quantity over time:

NB(Fh) =
1

T − L+ 1

T∑
t=L

NBt(Fh)

Comparison of different interventions:

τB(Fh′ ,Fh) = NB(Fh′)− NB(Fh)

9 / 23



Recap

F(w1) F(w2) F(w3)

t = 3

Outcome at time 3
NB3(F, L)

Stochastic 

interventionObserved

WT-3 F(wT-2) F(wT-1) F(wT)

t = T

Outcome at time T
NBT(F, L)

…
…

W1 F(w2) F(w3) F(w4)

t = 4

Outcome at time 4
NB4(F, L)

W2 F(w3) F(w4) F(w5)

t = 5

Outcome at time 5
NB5(F, L)

NB(F, L) − NB(F′, L)

Causal effects 
τB(F, F′, L) 

Temporal average 
NB(F, L)

NB3(F, L) NBT(F, L)

……

Comparing 

F and F’

Each counterfactual outcome is conditional on the past
Averaging is done over time
Inference is done by letting T go infinity
Example of causal inference with time series
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Assumptions

1 Unconfoundedness: treatment is independent of all potential (past and
future) paths for the outcome and time-varying confounders
conditional on the observed history

f (Wt | W t−1,Y t−1,X t , {YT ,XT}) = f (Wt | W t−1,Y t−1,X t)

2 Overlap: there exists a constant δW > 0 such that

f (Wt = w | W t−1,Y t−1,X t)︸ ︷︷ ︸
propensity score

> δW · fh(w)︸ ︷︷ ︸
density of Fh

for all w ∈ W

⇝ the ratio fh(w)/f (Wt = w | W t−1,Y t−1,X t) is bounded
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The Proposed Estimator

Inverse probability of treatment weighting (IPW)
Kernel smoothing of spatial point patterns
Estimated outcome surface at ω ∈ Ω under the intervention Fh

Ŷt(Fh;ω) =

counterfactual distribution︷ ︸︸ ︷
fh(Wt)

f̂ (Wt | W t−1,Y t−1,X t)︸ ︷︷ ︸
actual distribution

∑
s∈SYt

Kb(∥ω − s∥)

︸ ︷︷ ︸
spatially smoothed outcome

where Kb is the scaled Kernel function with bandwidth parameter b
Estimated number of outcome-active locations in region B

N̂Bt(Fh) =

∫
B
Ŷt(Fh;ω)dω

Averaging over time

N̂B(Fh) =
1
T

T∑
t=1

N̂Bt(Fh)
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Estimation for Intervention over Multiple Time Periods L

Estimated outcome surface at ω ∈ Ω

Ŷt(Fh;ω) =
t∏

j=t−L+1

fht−j+1(Wj)

f̂ (Wj | W j−1,Y j−1,X j)︸ ︷︷ ︸
product of L ratios

∑
s∈SYt

Kb(∥ω − s∥)

Estimated number of outcome-active locations in region B

N̂Bt(Fh) =

∫
B
Ŷt(Fh;ω)dω

Averaging over time

N̂B(Fh) =
1

T − L+ 1

T∑
t=L

N̂Bt(Fh)

Asymptotic normality
√
T
(
N̂B(Fh)− NB(Fh)

)
d−→ N (0, v)

Hájek estimator (normalized weights) for efficiency
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Heterogeneous Treatment Effects

Step 1: Estimating pixel-level treatment effects Step 2: Fitting a time-specific regression

…τ1t τ2t τ3t

τit

τpt

Pixel-level 
treatment effects 

at time t 
Treatment 


effects

Moderator 

values

R1 R2 R3 …

Ri

Rp

Pixel-level 
moderator values 
(pre-intervention 

at time t-L+1)

Moderator 

surface

Obtaining a summary statistic 

at the pixel level (e.g., mean)

Moderator 

values

…

Pixel-level 
moderator values

Outcome 

surfaces

Intervention 1

Intervention 2

Pixel Qi
Taking the 

difference

Integrating the 

outcome surface Pixel-level 

treatment effects

Treatment

effects

Regression at 
time t

Separate regression for each time period
Inference by averaging coefficients over time
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Causal Mechanisms

Mediator
mediator at location s ∈ Ω: Mt(s) ∈ M
collection of mediator values: {Mt(s), s ∈ Ω}
mediator history: Mt = (M1,M2, . . . ,Mt)
potential values: Mt(w t ,mt−1)

Potential outcome: Yt(w t ,mt)

Time-varying covariates: Xt(w t ,mt)

Stochastic intervention: F = (FW (w),FM|w (m))

FW : intervention distribution for W
FM|w : intervention distribution for M given W = w

Causal estimands

τB(F
′,F ′′)︸ ︷︷ ︸

total effect

= τ IE
B (F ′

M|w ,F
′′
M|w ;F

′
W )︸ ︷︷ ︸

indirect effect

+ τDE
B (F ′

W ,F ′′
W ;F ′

M|w )︸ ︷︷ ︸
direct effect
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Empirical Analysis: Setup

Estimate the baseline treatment distribution f0
inhomogeneous Poisson process regression
2006 data, separate from the 2007 evaluation data
covariates: aid, histories of air strikes, show of force, and insurgent
attacks (1, 7, and 30 days), log population, time splines, distances
from rivers, major roads, cities, and settlements

Questions:
1 How does increasing airstrikes affect insurgent violence?
⇝ vary c > 0 for h(ω) = c · f0(ω)

2 How does the shift in the prioritization of certain locations for airstrikes
change the spatial pattern of insurgent attacks?
⇝ vary α > 0 for hα(ω) ∝ f0(ω)dα(ω) with

∫
Ω
hα(ω)dω = c

power density dα(ω) ∝ d(ω)α

d(ω) = the normal density centered at sf with precision α

16 / 23



Intervention by Picture

2 airstrikes / day 3 airstrikes / day 4 airstrikes / day 5 airstrikes / day 6 airstrikes / day

(a) Counterfactual interventions with intensified airstrikes

αcities =  1 αcities =  2 αcities =  3 αcities =  4 αcities =  5

(b) Counterfactual interventions with location shifts
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Increasing the Expected Number of Airstrikes from 1 to 6
per Day Leads to More Insurgent Attacks with Large L
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Heterogeneous Treatment Effects

Hypothesis: airstrikes may further increase insurgent violence where
US and UK armed forces are present
Survey evidence: strong resentment against foreign forces
Armored vehicles are clear targets of insurgents

Mechanization
Soldiers per armored vehicles

2004 2006 2008

10

20

30

40

Year

Abu Ghraib

Adhamiya

Al Resafa

Al Sadr

Karkh

Khadamiya

Mada'in

Mahmoudiya

Tarmia
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CATE Is Positively Associated with Mechanization

1 day 2 days 3 days 4 days 5 days 6 days 7 days 8 days 9 days 10 days 11 days 12 days 13 days 14 days
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Civilian Casualty as a Causal Mechanism

Airstrikes −→ civilian casualty −→ insurgent’s response
Stochastic intervention:

FW : same as before
FM|w : adjust for population density, distances from roads, cities,
residential buildings, and settlements as key covariates

FM|w =
δ Pr(Mt = mt | Wt ,Xt)

δ Pr(Mt = mt | Wt ,Xt) + 1 − Pr(Mt = mt | Wt ,Xt)

Other

Civilians

Military

Baseline δ =  1.5 δ =  2.0 δ =  2.5

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.0

1.0

2.0

3.0

4.0

5.0

P(M | W, X)

D
en

si
ty
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Civilian Casualty Does Not Mediate the Effects of Airstrikes
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Concluding Remarks

A new approach to causal inference with spatio-temporal data
directly model point patterns without arbitrary aggregation
allow for unstructured spillover and carryover effects

Key idea: stochastic intervention
consider treatment distributions rather than fixed treatment values
can handle infinitely many possible treatment locations

Three methods
1 average treatment effects
2 heterogeneous treatment effects
3 causal mediation effects

R package: geocausal available at CRAN
Paper at https://imai.fas.harvard.edu/research/spatiotempo.html
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