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Motivation

@ Increasing availability of unstructured data in social sciences

e don't come in a nice matrix form «~ survey, official statistics
e text, images, audio, video, etc.

How should we draw causal inference from these new types of data?

@ Causal inference with spatio-temporal data
e a time series of maps as data
e treatment and outcome event locations in a continuous space
e applications: crime, disease, disasters, pollution, etc.

Methodological challenges
@ spillover effects over space
@ carryover effects over time
© infinitely many possible treatment and outcome locations

Current practice

@ arbitrary discretization of space
@ strong assumptions about spillover and carryover effects
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Contributions

o Causal inference with spatio-temporal data
e impossible to estimate causal effects of each treatment event

o unrestricted spillover and carryover effects
o probability of each treatment realization is zero ~ lack of overlap

e stochastic intervention based on the distribution of treatments

@ Causal estimands under stochastic intervention
o expected number of outcome events within a region of interest
@ various stochastic interventions
@ change the dosage while keeping the distribution identical
@ change the distribution while keeping the dosage constant
@ intervention over multiple time periods

@ The proposed methodology can estimate:

e average treatment effects
o heterogeneous treatment effects
o causal mediation effects

@ Empirical application: airstrikes and insurgent violence in Iraq
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Impacts of Airstrikes on Insurgent Violence in Iraq

@ Airstrikes as a principal tool for combating insurgency in civil wars

@ Three ongoing debates:
@ overall effectiveness: do airstrikes reduce subsequent insurgent attacks?
@ heterogeneous effects: what factors moderate effects of airstrikes?
© causal mechanisms: does civilian casualty mediate effects of airstrikes?

@ American air campaign in Iraq:
o declassified USAF data from Feb. 2007 to July 2008 (“surge” period)
e date and precise geolocation for

o airstrikes: aircraft type, number and type of bombs
@ insurgent attacks: small arms fire, improvised explosive devices

e location of US and UK military units

o weekly, district-level
@ troop density: soldiers per 1,000 residents
o troop type: US Marines, US Army, and UK Army
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Data: Airstrikes, Insurgent Attacks, Civilian Casualties

Airstrikes Insurgent attacks
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@ civilian casualty data
e Total: 151,000 (lraq family health survey), 200,000 (Irag Body Count)
o Use of satellite imagery to classify targets of airstrikes
o civilian: residential compounds and settlements

@ non-civilian: other buildings, farms, roads, unpopulated areas, others
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Methodological Overview

Designing stochastic interventions

Obtaining causal effects

Designing stochasﬁ)
interventions

r Spatiotemporal
(microlevel) data

Modeling
spatial distributions

—~
Integration of differences in
outcome surfaces

Stochastic interventions
over multiple time periods

Intervention 1 Outcome surfaces
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Intervention 2 effects
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Integrating the outcome

surface gives the expected
number of outcome eventsJ
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@ Model treatment assignment mechanism

@ Design stochastic interventions of interest

© Estimate the counterfactual outcomes and average them over time
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The Setup

o T time periods: t =1,2,..., T
@ Treatment variable

e : set of all possibly infinite locations that can receive the treatment
We(s) € {0,1}: binary treatment indicator for location s at time t

o W, ={W(s):s e Q} € W: treatment location map at time t
o Sy, = {s € Q: Wi(s) = 1}: set of treatment-active locations at time t
o W, = (Wi, W, ..., W,): observed treatment history up to time ¢t

@ Outcome variable
o Yi(s), Y: and Y, can be similarly defined
o Potential outcome: Y;(W;) where w; € W is a realized treatment and
w, = (wy, ws,...,w;) € W' is a treatment history realization at time t
o Observed outcome: Y; = Y:(W,)
o Sy,w,): set of outcome-active locations under treatment history w
o History of all potential outcomes up to time t:

Ve = {Yo(Wy) Wy e W't/ < t}
e Time-varying confounders: X;, X;, X;(W;_1), and X,
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Causal Estimands

Stochastic intervention: any distribution of treatment can be used

We consider Poisson point process Fj, with intensity function h

Expected number of outcome-active locations in region B at time t
under stochastic intervention F, conducted at time t

Nee(Fa) = /W N (Ye(We_1, we))dFa(we)

o Further average this quantity over time:
_ 1 d~
Ng(Fn) = =Y Nage(F)

@ We can compare the different interventions:
78(Fi, Fn) = Ng(Fi) — Ng(Fh)
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Stochastic Intervention over Multiple Time Periods

o Consider a non-dynamic stochastic intervention over L time periods
Fh = Fh1 X oo X FhL where h = (hl,hg,...,hL)

@ Expected number of outcome-active locations in region B at time t
under stochastic intervention Fp conducted from time t — L + 1 to ¢t

Nae(F) / /NB(Yf We i, we s, w))
thL(Wt—L+l) ce thl(Wt)

@ Average this quantity over time:

- 1
Ng(Fn) = mZNBt Fn)
t=L

@ Comparison of different interventions:
78(Fw, Fn) = Np(Fw)— Np(Fp)
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Recap

F(w1)  F(ws)  F(ws) ﬁ\gf‘ Nﬁj(FiatL;imGS
t=3
Comparing
i Fand F’
Wi Fws) F(ws) Flws) g»;‘- NH4(:2;|me4 o
t=4 Temporal average Causal effects
Ni(F, L) T8(F, F', L)
- o attime 5 ﬁ'\(\ﬁ’s ;73 Ni(E L) - Nu(F’, L)
G R oy NoEL | NalED
t=5
Observed intervention
— Outcome at time T —!
W3 F(wr2) Fwr1) Fwr) ﬁ}r\ Nor(E L)
t=T
@ Each counterfactual outcome is conditional on the past
@ Averaging is done over time
@ Inference is done by letting T go infinity
e Example of causal inference with time series
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Assumptions

© Unconfoundedness: treatment is independent of all potential (past and
future) paths for the outcome and time-varying confounders
conditional on the observed history
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~——
propensity score density of Fy,

~ the ratio fu(w)/f(W; = w | W;_1, Y+ 1, X:) is bounded
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The Proposed Estimator

@ Inverse probability of treatment weighting (IPW)

@ Kernel smoothing of spatial point patterns

@ Estimated outcome surface at w € € under the intervention F,
counterfactual distribution

(W,
G J— O N (R
f(Wt | W1, Yt—laxt) sESy,

actual distribution

spatially smoothed outcome

where K}, is the scaled Kernel function with bandwidth parameter b
@ Estimated number of outcome-active locations in region B

~

Ng:(Fr) = /BYA’t(Fh;w)dw

@ Averaging over time

~

Ng(Fp) = % ZﬁBt(Fh)
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Estimation for Intervention over Multiple Time Periods L

o Estimated outcome surface at w € Q
t

~ fh,_;
Yi(Fuiw) =[] Z Kp(|lw — s))

j=t—L+1 (W | WJ L YJ 1, X SESyt

product of L ratios

Estimated number of outcome-active locations in region B

Ne(F) = /B Y (Fi: ) doo

@ Averaging over time

-

=~ 1 =~

Ng(Fp) = T_imZNBt(Fh)
t=L

Asymptotic normality
= =~ d
ﬁ(NB(Fh) - NB(Fh)> — N(0,v)

Hajek estimator (normalized weights) for efficiency
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Heterogeneous Treatment Effects

Step 1: Estimating pixel-level treatment effects Step 2: Fitting a time-specific regression

Ou:;:ome Pixel-level
suriaces treatment effects Treatment
i ffect:
. Integrating the _ at time ¢ effects € at
i %""éf outcome surface Pixel-level o | T2 | Tn time ¢
g W treatment effects
“t 3 Taking the
Intervention 1 Pixel O difference -
B
o i o .
o0 ,,t
T a values
Intervention 2
Moderator Pixel-level Ri Re Ri ..
surface

moderator values

Pixel-level
)/‘ Obtaining a summary statistic moderator values
- . at the pixel level (e.g., mean) (pre-intervention A

at time +-L+1)
_ YA Ry )

@ Separate regression for each time period

@ Inference by averaging coefficients over time
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Causal Mechanisms

o Mediator

mediator at location s € Q: M,(s) € M
collection of mediator values: {M,(s),s € Q}
mediator history: M, = (My, M,, ..., M;)
potential values: M;(w;, m;_1)

Potential outcome: Y:(w;, m;)

Time-varying covariates: X¢(w, m;)

e Stochastic intervention: F = (Fy/(w), Fpu(m))
e Fy: intervention distribution for W
o Fpw: intervention distribution for M given W = w

o Causal estimands
TB(F/7 F”) = 7-“I3E(FI/\/I\W7 F//\;”W; F\//\/)+TBDE(F|//V7 F\///V’ FI/VI|W)

——
total effect

indirect effect direct effect

15/23



Empirical Analysis: Setup

@ Estimate the baseline treatment distribution f
e inhomogeneous Poisson process regression
e 2006 data, separate from the 2007 evaluation data
e covariates: aid, histories of air strikes, show of force, and insurgent
attacks (1, 7, and 30 days), log population, time splines, distances
from rivers, major roads, cities, and settlements

@ Questions:
@ How does increasing airstrikes affect insurgent violence?
~ vary ¢ > 0 for h(w) = ¢ - fo(w)
@ How does the shift in the prioritization of certain locations for airstrikes
change the spatial pattern of insurgent attacks?
~ vary o > 0 for hy(w) o fo(w)da (w) with [ he(w)dw = ¢
o power density d(w) o d(w)®
o d(w) = the normal density centered at s¢ with precision a
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Intervention by Picture

2 airstrikes / day 3 airstrikes / day 4 airstrikes / day 5 airstrikes / day 6 airstrikes /day

(a) Counterfactual interventions with intensified airstrikes
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Intervention by Picture

2 airstrikes / day 3 airstrikes / day 4 airstrikes / day 5 airstrikes / day 6 airstrikes /day

(a) Counterfactual interventions with intensified airstrikes

Oies = 1 cities = 2 Ocities = 3 Oities = 4 Ocities = 5

(b) Counterfactual interventions with location shifts
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Increasing the Expected Number of Airstrikes from 1 to 6
per Day Leads to More Insurgent Attacks with Large L

2 airstrikes / day | | 3 airstrikes /day | | 4 airstrikes /day | |5 airstrikes /day | | 6 airstrikes / day
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Increasing the Expected Number of Airstrikes from 1 to 6
per Day Leads to More Insurgent Attacks with Large L
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Heterogeneous Treatment Effects

@ Hypothesis: airstrikes may further increase insurgent violence where
US and UK armed forces are present

@ Survey evidence: strong resentment against foreign forces

@ Armored vehicles are clear targets of insurgents
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Heterogeneous Treatment Effects

@ Hypothesis: airstrikes may further increase insurgent violence where
US and UK armed forces are present

@ Survey evidence: strong resentment against foreign forces

@ Armored vehicles are clear targets of insurgents
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CATE Is Positively Associated with Mechanization
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Civilian Casualty as a Causal Mechanism

@ Airstrikes — civilian casualty — insurgent's response
@ Stochastic intervention:

e Fy/: same as before
o Fjw: adjust for population density, distances from roads, cities,
residential buildings, and settlements as key covariates

F _ 6Pr(Mt = m; ‘ Wt7xt)
MlW o 5PI’(Mt = m; | Wt7Xt) + ]. - Pr(Mt = My ‘ Wt7xt)

21/23



Civilian Casualty as a Causal Mechanism

@ Airstrikes — civilian casualty — insurgent's response
@ Stochastic intervention:

e Fy/: same as before
o Fjw: adjust for population density, distances from roads, cities,
residential buildings, and settlements as key covariates

F _ 6Pr(Mt = m; ‘ Wt7xt)
MlW o 5PI’(Mt = m; | Wt7Xt) + ]. - Pr(Mt = My ‘ Wt7xt)

21/23



Civilian Casualty as a Causal Mechanism

@ Airstrikes — civilian casualty — insurgent's response
@ Stochastic intervention:

e Fy/: same as before
o Fjw: adjust for population density, distances from roads, cities,
residential buildings, and settlements as key covariates

F _ 6Pr(Mt = m; ‘ Wt7xt)
MlW o 5PI’(Mt = m; | Wt7Xt) + ]. - Pr(Mt = My ‘ Wt7xt)

21/23



Civilian Casualty as a Causal Mechanism

@ Airstrikes — civilian casualty — insurgent's response
@ Stochastic intervention:

e Fy/: same as before
o Fjw: adjust for population density, distances from roads, cities,
residential buildings, and settlements as key covariates

F _ 6Pr(Mt = m; ‘ Wt7xt)
MlW o 5PI’(Mt = m; | Wt7Xt) + ]. - Pr(Mt = My ‘ Wt7xt)

21/23



Civilian Casualty as a Causal Mechanism

@ Airstrikes — civilian casualty — insurgent's response
@ Stochastic intervention:

e Fy/: same as before
o Fjw: adjust for population density, distances from roads, cities,
residential buildings, and settlements as key covariates

F _ 6Pr(Mt == mt | Wt,Xt)
MlW o 5Pr(Mt = mt | Wt7Xt) + ]. — Pr(Mt = mt ‘ Wt7xt)
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Civilian Casualty Does Not Mediate the Effects of Airstrikes
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Concluding Remarks

@ A new approach to causal inference with spatio-temporal data

o directly model point patterns without arbitrary aggregation
e allow for unstructured spillover and carryover effects

Key idea: stochastic intervention

o consider treatment distributions rather than fixed treatment values
e can handle infinitely many possible treatment locations

Three methods
@ average treatment effects
© heterogeneous treatment effects
© causal mediation effects

R package: geocausal available at CRAN

Paper at https://imai.fas.harvard.edu/research /spatiotempo.html
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