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Causal effect --m
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The causal effect is said to be identifiable if it is uniquely
computable from P(V).
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P TOTAL EFFECT A.K.A AVERAGE TREATMENT EFFECT (ATE)

Total effect
=E(Y | do(X = x)) — E(Y | do(X = X))

~ P(y | do(x))

Where do(-) is an operator representing
an intervention.

Pearl, “Causal diagrams for empirical research”. Biometrika, 1995
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=E(Y | do(X = x)) — E(Y | do(X = X))

~ P(y | do(x))

Where do(-) is an operator representing
an intervention.
P(y | do(x)) is identifiable if it is uniquely computable from a

positive observationnal distribution P(V).

The do-calculus is a sound and complete for identification.
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P CAUSAL GRAPHS

Structural Causal

Model
VX, &  Dx
A= fa(&a, Eab)
G = f6(&)
H:=fu(G, &)
I:=£i(G. &)

B:=fs(A H, & &)

C:=fc(A B 1,&)

F:=fr(C, G &)

D:=fp(C F &)

E:=fe(B,D,G,¢&)
Pearl, Causality: Models, Reasoning, and Inference. Cambridge University
Press, 2009
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Structural Causal Directed Acyclic
Model Graph (DAG)
&a -
VX, & + Dx €ab /' &
A = fa(€a, €ab) N
6 = fo(&s) & —(8)~(c)
H = fu(G, &)
1= £(G.£&) (o)
B:=fs(A H, & &) b
C:=fc(AB.1 &) e &
F:=fr(C.G &) 0
D= fulC.F. ) f f
E:=f:(B,D,G &) & . &
Pearl, Causality: Models, Reasoning, ané Inference. Cambridge University
Press, 2009
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Acyclic Directed
Mixed Graph
(ADMG)

Structural Causal Directed Acyclic
Model Graph (DAG)

VX, & < Dy
—fA(ga gab

=0
= fo(&9) e e

= fu(G. &)

= fi(G, &)

= fe(A H, &, Eab)

= fc(A B, 1,&)

=fr(C, G, &) 0

= fo(C, F. &q)
= fe(B,D, G, &) ;
Pearl, Causality: Models, Reasoning, angj Inference. Cambridge University

Press, 2009
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JPLesp  CAUSAL GRAPHS

Acyclic Directed
Mixed Graph
(ADMG)

Structural Causal Directed Acyclic
Model Graph (DAG)

€a
VX, €x < Dy gab> & °
A= fa(€a, €ab)
G::fz-(sg) b SO0 (5)~(¢)

H = fu(G, &)
= 1(6.¢) (o) (o)
B:=>b
Ci=fe(AB.I£) Ee_<:> }i> g
F:=f(C.G.&) (1) O ‘n’iilbai’
D = fo(C. F. &) Q g (6)
h i

E:=fe(B,D,G, &)

&g A .
Pearl, Causality: Models, Reasoning, and Inference. Cambridge University
Press, 2009
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JliPLesp  D-SEPARATION FOR ADMGS

A path is said to be blocked by a set of vertices Z C V If:
m it contains a chain (A«~+B — C) or (A + B<«=C) or a fork
(A<~ B—C)andBe Z or
m it contains a collider (A=+B<=C) such that no descendant
of Bisin Z.

Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc. 1988
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ﬁ'F’LeSD D-SEPARATION FOR ADMGS
A path is said to be blocked by a set of vertices Z C V If:

m it contains a chain (A«~+B — C) or (A + B<«=C) or a fork
(A<~ B—C)andBe Z or

m it contains a collider (A=+B<=C) such that no descendant
of Bisin Z.

Xand Y are d-separated by Z if every path between X and Y is
blocked by Z and we write (XLgY | Z)g.

(XALgY | Z)g = Xdip,Y | Z

Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc. 1988
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JlPLesp  po-CALCULUS FOR ADMGS

The do-calculus consists of three rules:
Rule 1 P(y|do(x), z, w) = P(y|do(x),w) if (Y1 4Z| X,W)gY
Rule 2 P(y|do(x,z),w) = P(y|do(x),z,w) if (Y1 4Z|X, W)
Rule 3 P(y|do(x,z),w) = P(y|do(x),w) if (Yl 4Z|X, W)

Iz

Ixzw)

Pearl, “Causal diagrams for empirical research”. Biometrika, 1995
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ﬁ'F’LeSD BACK-DOOR CRITERION

A set of variables Z satisfies the back-door criterion relative to
(X,Y) if:

m ZNnDe(X,G) =0, and

m Z blocks every back-door path (i.e., (X < ---Y)).
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A set of variables Z satisfies the back-door criterion relative to
(X,Y) if:

m ZNnDe(X,G) =0, and

m Z blocks every back-door path (i.e, (X < ---Y)).

If Z satisfies the back-door criterion relative to (X, Y) then:

Pr(y | do(x)) = ZPry|xz Pr(2)
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SP BACK-DOOR CRITERION

Definition

A set of variables Z satisfies the back-door criterion relative to
(X,Y)Iif:

m ZNDe(X,G) =0, and

m Z blocks every back-door path (i.e., (X < ---Y)).

P(y | do(x))
—ZPy|do ,2)P(z | do(x))

= ZP(V | x,z)P(z | do(x)) (Rule2)
= ZP(V | x,z)P(z) (Rule 3)

Causal reasoning with cyclic graphs The SCM framework 7133



S®  THE DO-CALCULUS CAN TIME BE CONSUMING

Causal reasoning with cyclic graphs The SCM framework 8/33



S®  THE DO-CALCULUS CAN TIME BE CONSUMING

P(y | do(x))

Causal reasoning with cyclic graphs The SCM framework 8/33



S®  THE DO-CALCULUS CAN TIME BE CONSUMING

P(y | do(x)) = > _P(y | do(x),w)P(w | do(x))

w
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P(y | do(x)) = > _P(y | do(x), w)P(w | do(x))
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= > _P(y | do(w))P(w | do(x)) (Rule3)

Causal reasoning with cyclic graphs The SCM framework 81/33



ﬁ'PLeSD THE DO-CALCULUS CAN TIME BE CONSUMING

P(y | do(x)) = > _P(y | do(x), w)P(w | do(x))
= ZP(y | do(x), do(w))P(w | do(x)) (Rule 2)
= S P(y | do(w))P(w | do(x)) (Rule 3)

= > _wxP(y [ do(w),x')P(X' | do(w))P(w | do(x))

Causal reasoning with cyclic graphs The SCM framework

8/33



ﬁ'PLeSD THE DO-CALCULUS CAN TIME BE CONSUMING

P(y | do(x)) = > _P(y | do(x), w)P(w | do(x))
= ZP(y | do(x), do(w))P(w | do(x)) (Rule 2)
= S P(y | do(w))P(w | do(x)) (Rule 3)

=> wxP(y | do(w),X)P(x' | do(w))P(w | do(x))
= Z P(y | w, X )P(X' | do(w))P(w | do(x)) (Rule 2)

w,x/

Causal reasoning with cyclic graphs The SCM framework

8/33



ﬁ'PLeSD THE DO-CALCULUS CAN TIME BE CONSUMING

P(y | do(x)) = > _P(y | do(x), w)P(w | do(x))
= ZP(y | do(x), do(w))P(w | do(x)) (Rule 2)
= S P(y | do(w))P(w | do(x)) (Rule 3)

=> wxP(y | do(w),X)P(x' | do(w))P(w | do(x))
= Z P(y | w, X )P(X' | do(w))P(w | do(x)) (Rule 2)

w,x/

= 3" P(y | w,X)P(X)P(w | do(x)) (Rule 3)

w,x/

Causal reasoning with cyclic graphs The SCM framework

8/33



ﬁ'PLeSD THE DO-CALCULUS CAN TIME BE CONSUMING

P(y | do(x)) = > _P(y | do(x), w)P(w | do(x))
= ZP(y | do(x), do(w))P(w | do(x)) (Rule 2)
= S P(y | do(w))P(w | do(x)) (Rule 3)

=> wxP(y | do(w),X)P(x' | do(w))P(w | do(x))
= Z P(y | w, X )P(X' | do(w))P(w | do(x)) (Rule 2)

w,x/

= 3" P(y | w,X)P(X)P(w | do(x)) (Rule 3)

w,x/

Causal reasoning with cyclic graphs The SCM framework 81/33



P(y | do(x)) = > _P(y | do(x), w)P(w | do(x))
= ZP(y | do(x), do(w))P(w | do(x)) (Rule 2)
= S P(y | do(w))P(w | do(x)) (Rule 3)

=> wxP(y | do(w),X)P(x' | do(w))P(w | do(x))
= Z P(y | w, X )P(X' | do(w))P(w | do(x)) (Rule 2)

w,x/

=> Py | w,x)P(X)P(w | do(x)) (Rule3)

In this specific case, the total effect is not identifiable
— We can never find a do-free formula!
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P HEDGE CRITERION FOR ADMGS

A hedge for P(y | do(x)) is a subgraph with specific graphical
constraints related to X and Y.

Shpitser and Pearl, “Complete identification methods for the causal
hierarchy”. JMLR, 2008

Causal reasoning with cyclic graphs The SCM framework

9/33



R'PLGSD HEDGE CRITERION FOR ADMGS

A hedge for P(y | do(x)) is a subgraph with specific graphical
constraints related to X and Y.

m no bidirected dashed edges = no hedges

Ry
m This graph is a hedge: (j @

Shpitser and Pearl, “Complete identification methods for the causal
hierarchy”. JMLR, 2008

Causal reasoning with cyclic graphs The SCM framework 9/33



ﬁ'F’LeSD HEDGE CRITERION FOR ADMGS

A hedge for P(y | do(x)) is a subgraph with specific graphical
constraints related to X and Y.

m no bidirected dashed edges = no hedges

Ry
m This graph is a hedge: @ @

Theorem

P(y | do(x)) is not identifiable in G if and only if there is a
hedge for the ordered pair (X,Y) in G.

Shpitser and Pearl, “Complete identification methods for the causal
hierarchy”. JMLR, 2008

Causal reasoning with cyclic graphs The SCM framework 9/33



iPLesp  HEDGE CRITERION FOR ADMGS

A hedge for P(y | do(x)) is a subgraph with specific graphical
constraints related to X and Y.

m no bidirected dashed edges = no hedges

Ry
m This graph is a hedge: (j @

P(y | do(x)) is not identifiable in G if and only if there is a
hedge for the ordered pair (X,Y) in G.

Shpitser and Pearl, “Complete identification methods for the causal
hierarchy”. JMLR, 2008

Causal reasoning with cyclic graphs The SCM framework 9/33



JlPLesp  HEDGE CRITERION FOR ADMGS: DEFINITION

C-component: Set of ver-
tices which are all connected
via bidirected arrows. @

(B——(c
Figure: C-component

Forest:  Acyclic graph in

which every edge has at
most one children.

We call roots the nodes with
no children.

Figure: Forest

Hedge for (X, Y): Pair of R-rooted C-forests (F, F’) in the graph
such that:

m RCAn(Y,G\{V}) BFNX=0

mFCF mFNX#()
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P CLUSTER DMGS oVER ADMGs

ADMG C-DMG over ADMGs

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs.
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ADMG C-DMG over ADMGs
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'
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\

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs.
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RiPlesp  CLUSTER DMGS OVER ADMGs

C-DMG over ADMGs

N

"
6.9

(W) )
Cycles !

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs.
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C-DMG over ADMGs

>~ A
1

!
\
-

Assumption: For every cycle (e.g., (B,C) — (D, E, F,G) — (H) — (B, C))
no 2 adjacent clusters are of size 1.

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs.
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JliPLeso  ADMGS WITH TIME AND SUMMARY CAUSAL GRAPHS

Assaad, Devijver, and Gaussier, “Survey and Evaluation of Causal Discovery
Methods for Time Series”. JAIR, 2022
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m SCGs can contain cycles

Assaad, Devijver, and Gaussier, “Survey and Evaluation of Causal Discovery
Methods for Time Series”. JAIR, 2022
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m SCGs can contain cycles
m Fach vertex does not map to one single random variable

Assaad, Devijver, and Gaussier, “Survey and Evaluation of Causal Discovery
Methods for Time Series”. JAIR, 2022
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ADMGS WITH TIME AND SUMMARY CAUSAL GRAPHS

: (235@)?@;@? “Summary causal graph (SCG)

W, Wr ‘4’@4"@1

I A N Nl e ) =

m SCGs can contain cycles
m Fach vertex does not map to one single random variable
m There might exists many ADMGs compatible with one SCG

Assaad, Devijver, and Gaussier, “Survey and Evaluation of Causal Discovery
Methods for Time Series”. JAIR, 2022
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P TwO TYPES OF TOTAL EFFECTS IN C-DMGS

A micro total effect is a total effect from a single variable in a
cluster (e.g, Xt—y) to another single variable (e.g, Y;). For
example: Pr(y: | do (Xt—y)).

Ferreira and Assaad, “Identifying macro conditional independencies and
macro total effects in summary causal graphs with latent confounding”.
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A micro total effect is a total effect from a single variable in a
cluster (e.g, Xt—y) to another single variable (e.g, Y;). For
example: Pr(y: | do (Xt—y)).

C—

A macro total effect is a total effect from a whole cluster (e.g.,
{Xty, Xtgr1, -+, Xt—1, Xt }) to @ whole other cluster (e.g,

{Yty, Ytou1, ==+, Ye—, Yt}). For example:

Pr({¥to: Vtot1, -+ Ye—1, Yt} | dO ({Xto, Xtgt1, =+, Xt—1, Xt }))-

Ke)

t—1

Ferreira and Assaad, “Identifying macro conditional independencies and
macro total effects in summary causal graphs with latent confounding”.
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A micro total effect is a total effect from a single variable in a
cluster (e.g, Xt—y) to another single variable (e.g, Y;). For
example: Pr(y: | do (Xt—y)).

A macro total effect is a total effect from a whole cluster (e.g.,
{Xty, Xtg41, - . Xt—1, X¢}) to @ whole other cluster (e.g,,

{Yto, Yiot1, - -+, Y1, Yt}). For example:

Pr( {Ytonto+1v Ve, Yeb | do ({Xeo, Xtg4a, -0+ Xe—1, Xe })).

v §eee

Ferreira and Assaad, “Identifying macro conditional independencies and
macro total effects in summary causal graphs with latent confounding”.
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A micro total effect is a total effect from a single variable in a
cluster (e.g.,, Xt_) to another single variable (e.g., Yz). For
example: Pr(y: | do (Xt—)).

A macro total effect is a total effect from a whole cluster (e.g.,
{Xto,Xto+1, e ,XH,Xt}) to a whole other cluster (e.g.,

{Yty, Yeo i1, - Yt 1, Yt¢}). For example:
Pr({¥to. Vtot1, -+ Y1, yt} | do ({Xto, Xto+1. -

Co——(r)

Ferreira and Assaad, “Identifying macro conditional independencies and
macro total effects in summary causal graphs with latent confounding”.
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P D-SEPARATION FOR C-DMGS OVER ADMGS

Is d-separation applicable for C-DMGs over ADMGs?
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ﬁ'F’LeSD D-SEPARATION FOR C-DMGS OVER ADMGS

Is d-separation applicable for C-DMGs over ADMGs?
Yes!

d-separation is valid in C-DMGs over ADMGs.
m /f a d-separation holds in a given C-DMG, then it holds in
every compatible ADMG.

m /f a d-separation does not hold in a given C-DMG, then
there exists a compatible ADMG in which it does not hold.

Causal reasoning with cyclic graphs Cluster DMGs over ADMGs Causal tools 15/ 33
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Is the path (X < W = Y)
blocked by {Z, W}?
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Is the path (W — X < 2)
blocked by U {X}?
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i"LeSP  DO-CALCULUS FOR C-DMGs OVER ADMGs

Is do-calculus applicable for C-DMGs over ADMGs?
Yes!

Theorem
The Rules 1-3 of the do-calculus are valid in C-DMGs over DMGs.

m If a sequence of rules apply in a given C-DMG, then it
applies in every compatible ADMG.

m If a sequence of rules of the do-calculus does not apply in
a given C-DMG, then there exists a compatible ADMG in
which it does not apply.
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P(y | do(x))
= "P(y | do(x), w)P(w | do(x))

= Z P(y | do(x), do(w))P(w | x) (Rule 2) x2

P(y | do(x))
=P(y|x) (Rule2) = ZP | do(w))P(w | x) (Rule 3)

= Zw.fo(y | do(w), X')P(X' | do(w))P(w | X)
=3Py | w,X)P(X | do(w))P(w | x) (Rule2)
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P(y | do(x))
=P(y|x) (Rule2) = ZP | do(w))P(w | x) (Rule 3)

= Zw.fo(y | do(w), X')P(X' | do(w))P(w | X)
=3Py | w,X)P(X | do(w))P(w | x) (Rule2)

w,x/

=S "P(y | w,X)P(X)P(w | x) (Rule3)
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COMPLETENESS OF D-SEPARATION AND DO-CALCULUS FOR
C-DMGs ovER ADMGSs

Are the d-separation and do-calculus complete for C-DMGs
over ADMGs?
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C-DMGS oVER ADMGs

Are the d-separation and do-calculus complete for C-DMGs
over ADMGs? No!

Assumption: For every cycle, no two adjacent clusters are of
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R'F’Lesp SC-HEDGES FOR C-DMGS OVER ADMGS

Consider an C-DMG G®. The SC-projection H® of G® is the graph
that includes all vertices and edges from G*, plus a bidirected
dashed edge between each pair X, Y € S such that
XeScc(Y,G)=De(Y,G°)NAn(Y,G*)and X £ Y.
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ﬁ'F’LeSD SC-HEDGES FOR C-DMGS OVER ADMGS

Consider an C-DMG G®. The SC-projection H® of G® is the graph
that includes all vertices and edges from G*, plus a bidirected
dashed edge between each pair X, Y € S such that
XeScc(Y,G)=De(Y,G°)NAn(Y,G*)and X £ Y.

C-DMG SC-projection

Theorem

Consider that H? is the SC-projection of the C-DMG G°.

P(y | do(x)) is not identifiable in G®* if there exists a hedge for
the ordered pair (X,Y) in H>.
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R'PLeSD WHAT ABOUT MICRO-QUERIES?

Reminder:

B A macro causal effect is a causal effect from a whole
cluster X to a another whole clusterY, e.g,
Pr (Yto, Yto+1' e Yt_1, Yt | do (XtO’XtO+1’ s ,Xt_—l,Xt)).

m A micro causal effect is a total effect from a single variable
X to another single variable Y, e.g., Pr(y: | do (Xt—y)).
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m A micro causal effect is a total effect from a single variable
X to another single variable Y, e.g., Pr(y: | do (Xt—y)).

Can we identify micro causal effects in C-DMGs over ADMGs?
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In specific cases and/or with prior knowledge, such as time,
then yes!
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Can we identify micro causal effects in C-DMGs over ADMGs?

In specific cases and/or with prior knowledge, such as time,
then yes!

m Assaad et al,, “Identifiability of total effects from abstractions of time
series causal graphs”.

m Assaad, “Towards identifiability of micro total effects in summary causal
graphs with latent confounding: extension of the front-door criterion”.

m Ferreira and Assaad, “Identifiability of Direct Effects from Summary
Causal Graphs”.

m Ferreira and Assaad, “Average Controlled and Average Natural Micro
Direct Effects in Summary Causal Graphs”.

Causal reasoning with cyclic graphs Cluster DMGs over ADMGs Causal tools 22 /33



UNIVERSITE

Inserm LiPlesp S S

THE INPUT/OUTPUT SCM FRAME-
WORK

DEFINITIONS
CAUSAL TOOLS IN DMGs



Inserm LiPlesp S S

UNIVERSITE

THE INPUT/OUTPUT SCM FRAME-
WORK

DEFINITIONS



SiPLesp

INPUT/OUTPUT SCMsS

i/o SCM

VX, & < Dy
A = fa(€a, €ab)

B :=fg(A D, E, &b Eab)
= fc(B. &)
= fo(C, &q)
E:=fe(C, &)

(B.C,D) = f.co)(A E &b, Eab. Ec. €a)
(B.C.E) == fscr)(A D, &, Eap. Ec. Ee)
(B.C,D,E) = fgc)(A &b Eab. &c. €d. Ee)

Assumption: Compatibility of the generating processes in

cycles.

eg, (b.c.d)=fpcn)(a e & Eab. &c. €a) = b =Tfp(a,d e &, Eap)
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INPUT/OUTPUT SCMsS

Aeyetie Directed Mixed
Graph (DMG)

i/o SCM

VX, EX < Dy
A= fa(&a Eap)
B :=fg(A D, E & Eab)

C:=fc(B. &)
D :=fpn(C, &q)
E:=fe(C &)

(B,C.D) :=fs.co)(A E &b Eab. &c. €a)
(B,C.E) := fig.c.ey(A D, &b, Eab. Ec. Ee)
(B.C,D.E) = fgcp)(A &b Eab. &c. €d. Ee)

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent
Confounders and Selection Bias”
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P INPUT/OUTPUT SCMs

i/o SCM Directed Mixed Graph (DMG)

VX, & < Dy

A= fa(€a, Eap) , 0

B :=fs(A,D,E &b, £ab) '

C = fe(B. &) ‘»

D:=d
E:= fE(Cv ge)

(B, C,E) := fg.c)(A D, &b, Eab, Ec. Ee) e

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent
Confounders and Selection Bias”
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R'PLGSD SIGMA-SEPARATION

Strongly connected component: Scc(V, G) := An (V,G) N De(V,G)

A walk 7t = (V4, .-+, Vp) is said to be o-blocked by a set of
vertices Z C V if:

1. 31 < i< nsuchthat (V;_;=Vi<~V; ;) Ciand V; ¢ Z, or
31 < i< nsuchthat (V;_; < Vi«=V;,) C & and V; € Z\Scc (V;_4, G), or
31 < i< nsuchthat (Vi_;=V; = V;,) C & and V; € Z\Scc (V4. G), or
31 < i < nsuchthat (Vi_, « V; = V;,,) C 7 and
V; € Z\ (Scc (Vi_,, G) nSce Vi, G)).

oW N

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent
Confounders and Selection Bias”. PMLR, 2020.
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31 < i< nsuchthat (Vi_;=V; = V;,) C & and V; € Z\Scc (V4. G), or
31 < i < nsuchthat (Vi_, « V; = V;,,) C 7 and
V; € Z\ (Scc (Vi_,, G) nSce Vi, G)).
XandY are o-separated by Z if every walk between X and Y is
blocked by Z and we write (XL, Y | Z)g.

oW N
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Strongly connected component: Scc(V, G) := An (V,G) N De(V,G)

A walk 7t = (V4, .-+, Vp) is said to be o-blocked by a set of
vertices Z C V if:
1. 31 < i< nsuchthat (V;_;=Vi<~V; ;) Ciand V; ¢ Z, or
31 < i < nsuchthat (V;_, + Vj++V;,) C 7 and V; € Z\Scc (V;_,, G), or
31 < i< nsuchthat (Vi_;=V; = V;,) C & and V; € Z\Scc (V4. G), or
31 < i < nsuchthat (Vi_, « V; = V;,,) C 7 and
V; € Z\ (Scc (Vi_,, G) nSce Vi, G)).
XandY are o-separated by Z if every walk between X and Y is
blocked by Z and we write (XL, Y | Z)g.

oW N

Theorem
(XUL,Y | Z)g = Xlip,Y | Z

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent
Confounders and Selection Bias”. PMLR, 2020.
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ﬂlPLeSP DO-CALCULUS FOR DMGS

The o-based do-calculus consists of three rules:
Rule 1 P(y|do(x), z,w) = P(y|do(x),w) if (Y1 ,Z | X'W)Qy
Rule 2 P(y|do(x,z),w) = P(y|do(x),z,w) if (Y1, Z| X,W)gXZ
Rule 3 P(y|do(x,z),w) = P(yldo(x),w) if (YA,Z|X W),

XZ(W)

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent
Confounders and Selection Bias”. PMLR, 2020.

Causal reasoning with cyclic graphs The Input/Output SCM framework Causal tools in DMGs
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The o-based do-calculus consists of three rules:
Rule 1 P(y|do(x),z, w) = P(y|do(x),w) if (Y1 ,Z]|X, W)gi
Rule 2 P(y|do(x,z),w) = P(y|do(x),z,w) if (Y1 ,Z|X, W)
Rule 3 P(yldo(x,z),w) = P(yldo(x),w) if (Y1 ,Z|X W)g

Oxz

XZ(W)

Theorem

P(y | do(x)) is identifiable if end-ordy-if there exists a finite
sequence of transformations, each conforming to either one of
the Rules 1-3 or some standard probability manipulations, that
reduces P(y | do(x)) into a do-free formula.

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent
Confounders and Selection Bias”. PMLR, 2020.
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The o-based do-calculus consists of three rules:
Rule 1 P(y|do(x),z, w) = P(y|do(x),w) if (Y1 ,Z]|X, W)gi
Rule 2 P(y|do(x,z),w) = P(y|do(x),z,w) if (Y1 ,Z|X, W)
Rule 3 P(yldo(x,z),w) = P(yldo(x),w) if (Y1 ,Z|X W)g

Oxz

XZ(W)

Theorem

P(y | do(x)) is identifiable if end-ordy-if there exists a finite
sequence of transformations, each conforming to either one of
the Rules 1-3 or some standard probability manipulations, that
reduces P(y | do(x)) into a do-free formula.

The do-calculus is sound!

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent
Confounders and Selection Bias”. PMLR, 2020.

Causal reasoning with cyclic graphs The Input/Output SCM framework Causal tools in DMGs 25/ 33



Inserm LiPlesp S S

UNIVERSITE

CLUSTER DMGS OVER DMGS

DEFINITIONS
CAUSAL TOOLS



Inserm LiPlesp S S

UNIVERSITE

CLUSTER DMGS OVER DMGS

DEFINITIONS



P CLUSTER DMGS OVER DMGs

DMG C-DMG over DMGs

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs over DMGs.
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JlPLesp  CLUSTER DMGS OVER DMGs

DMG C-DMG over DMGs

>
i
1

T
6.0
|

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs over DMGs.
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JlPLesp  CLUSTER DMGS OVER DMGs

DMG C-DMG over DMGs

/ - _ -
\ , -

When cluétering, cycles can:
m "disappear" (e.g, | — J — 1) and/or
m "remain" (eg,C — F— D — C)and/or
m "appear' (eg, A — (B,C) — A).
Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs over DMGs.

Causal reasoning with cyclic graphs Cluster DMGs over DMGs Definitions
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P o-SEPARATION FOR C-DMGS OVER DMGS

Is o-separation applicable for C-DMGs over DMGs?
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ﬁ'F’LeSD 0-SEPARATION FOR C-DMGS OVER DMGs

Is o-separation applicable for C-DMGs over DMGs?
Yes!

Theorem
o-separation is valid in C-DMGs over DMGs.
m /f a o-separation holds in a given C-DMG, then it holds in
every compatible DMG.

m /f a o-separation does not hold in a given C-DMG, then
there exists a compatible DMG in which it does not hold.
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ﬁ'PLeSD 0-BASED DO-CALCULUS FOR C-DMGS OVER DMGS

Is o-based do-calculus applicable for C-DMGs over DMGs?
Yes!

The Rules 1-3 of the do-calculus are valid in C-DMGs over DMGs.

m If a sequence of rules apply in a given C-DMG, then it
applies in every compatible DMG.

m If a sequence of rules of the do-calculus does not apply in
a given C-DMG, then there exists a compatible DMG in
which it does not apply.

Causal reasoning with cyclic graphs Cluster DMGs over DMGs Causal tools 28 /33



Inserm LiPlesp S S

UNIVERSITE

CONCLUSION



RiPLegg KEY MESSAGE

Use causal graphs'!
m Even if the causal graph is not fully specified,
m Even if the causal graph is cyclic.

Now, there exist tools which accomodate these cases.
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