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1
The SCM framework



Causal inference and identifiability

Causal effect Estimand

Causal graph Estimate

Data

The causal effect is said to be identifiable if it is uniquely
computable from P(V).
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Total effect a.k.a Average Treatment Effect (ATE)

Total effect

= E(Y | do(X = x))− E(Y | do(X = x′))

∼ P(y | do(x))

Where do(·) is an operator representing
an intervention.

X Y

Z

M

P(y | do(x)) is identifiable if it is uniquely computable from a
positive observationnal distribution P(V).

The do-calculus is a sound and complete for identification.

Pearl, “Causal diagrams for empirical research”. Biometrika, 1995
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Causal graphs

Structural Causal
Model

Directed Acyclic
Graph (DAG)

Acyclic Directed
Mixed Graph

(ADMG)

∀x, ξx ← Dx
A := fA(ξa, ξab)
G := fG(ξg)
H := fH(G, ξh)
I := fI(G, ξi)
B := fB(A,H, ξb, ξab)
C := fC(A,B, I, ξc)
F := fF(C,G, ξf )
D := fD(C, F, ξd)
E := fE(B,D,G, ξe)

A

B C

D

E F

G

H I

ξc

ξa

ξb

ξab

ξd

ξe ξf

ξg

ξh ξi

A

B C

D

E F

G

H I

Pearl, Causality: Models, Reasoning, and Inference. Cambridge University
Press, 2009
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d-separation for ADMGs

A path is said to be blocked by a set of vertices Z ⊂ V if:
it contains a chain ⟨A∗→B→ C⟩ or ⟨A← B← ∗C⟩ or a fork
⟨A← B→ C⟩ and B ∈ Z; or
it contains a collider ⟨A∗→B← ∗C⟩ such that no descendant
of B is in Z.

X and Y are d-separated by Z if every path between X and Y is
blocked by Z and we write (X |= dY | Z)G .

Theorem
(X |= dY | Z)G ⇒ X |= PrY | Z

Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc. 1988
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do-calculus for ADMGs

The do-calculus consists of three rules:
Rule 1 P(y|do(x), z,w) = P(y|do(x),w) if (Y |= dZ | X,W)GX

Rule 2 P(y|do(x, z),w) = P(y|do(x), z,w) if (Y |= dZ | X,W)GXZ

Rule 3 P(y|do(x, z),w) = P(y|do(x),w) if (Y |= dZ | X,W)GXZ(W)

Theorem
P(y | do(x)) is identifiable if and only if there exists a finite
sequence of transformations, each conforming to either one of
the Rules 1-3 or some standard probability manipulations, that
reduces P(y | do(x)) into a do-free formula.

The do-calculus is sound and complete!

Pearl, “Causal diagrams for empirical research”. Biometrika, 1995
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Back-Door Criterion

Definition
A set of variables Z satisfies the back-door criterion relative to
(X, Y) if:

Z ∩ De (X,G) = ∅, and
Z blocks every back-door path (i.e., ⟨X ← · · · Y⟩).

Theorem
If Z satisfies the back-door criterion relative to (X, Y) then:

Pr (y | do (x)) =
∑

z

Pr (y | x, z) Pr (z)
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Z ∩ De (X,G) = ∅, and
Z blocks every back-door path (i.e., ⟨X ← · · · Y⟩).

X Y

Z

M

P(y | do(x))

=
∑
z
P(y | do(x), z)P(z | do(x))

=
∑
z
P(y | x, z)P(z | do(x)) (Rule 2)

=
∑
z
P(y | x, z)P(z) (Rule 3)

Causal reasoning with cyclic graphs The SCM framework 7 / 33



The do-calculus can time be consuming

X Y

W

P(y | do(x))

=
∑

w

P(y | do(x),w)P(w | do(x))

=
∑

w

P(y | do(x),do(w))P(w | do(x)) (Rule 2)

=
∑

w

P(y | do(w))P(w | do(x)) (Rule 3)

=
∑

w,x′P(y | do(w), x′)P(x′ | do(w))P(w | do(x))

=
∑
w,x′

P(y | w, x′)P(x′ | do(w))P(w | do(x)) (Rule 2)

=
∑
w,x′

P(y | w, x′)P(x′)P(w | do(x)) (Rule 3)

= ...

In this specific case, the total effect is not identifiable
=⇒ We can never find a do-free formula!
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Hedge criterion for ADMGs

A hedge for P(y | do(x)) is a subgraph with specific graphical
constraints related to X and Y.

no bidirected dashed edges =⇒ no hedges

This graph is a hedge: X Y

Theorem
P(y | do(x)) is not identifiable in G if and only if there is a
hedge for the ordered pair (X,Y) in G.

X ZW

Y

X Z

W Y

U

Shpitser and Pearl, “Complete identification methods for the causal
hierarchy”. JMLR, 2008
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Hedge criterion for ADMGs: definition

C-component: Set of ver-
tices which are all connected
via bidirected arrows. A B C

Figure: C-component

Forest: Acyclic graph in
which every edge has at
most one children.
We call roots the nodes with
no children.

R1 A R2

Figure: Forest

Hedge for (X,Y): Pair of R-rooted C-forests (F ,F ′) in the graph
such that:

R ⊆ An (Y,G\{V})
F ⊆ F ′

F ∩ X = ∅
F ′ ∩ X ̸= ∅

Causal reasoning with cyclic graphs The SCM framework 10 / 33
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Cluster DMGs over ADMGs

ADMG C-DMG over ADMGs

A

B C

D

E F

G

H I

A

B, C

D, E, F,G

H I

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs.
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ADMG C-DMG over ADMGs
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Assumption: For every cycle (e.g., (B, C)→ (D, E, F,G)→ (H)→ (B, C))
no 2 adjacent clusters are of size 1.
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2
Cluster DMGs over ADMGs

Definitions
Summary causal graphs
Causal tools



ADMGs with time and summary causal graphs

Zt−2 Zt−1 Zt Zt+1

Xt−2 Xt−1 Xt Xt+1

Yt−2 Yt−1 Yt Yt+1

Wt−2 Wt−1 Wt Wt+1

Summary causal graph (SCG)

X Y

Z

W

SCGs can contain cycles
Each vertex does not map to one single random variable
There might exists many ADMGs compatible with one SCG

Assaad, Devijver, and Gaussier, “Survey and Evaluation of Causal Discovery
Methods for Time Series”. JAIR, 2022

Causal reasoning with cyclic graphs Cluster DMGs over ADMGs Summary causal graphs 12 / 33



ADMGs with time and summary causal graphs

Zt−2 Zt−1 Zt Zt+1

Xt−2 Xt−1 Xt Xt+1

Yt−2 Yt−1 Yt Yt+1

Wt−2 Wt−1 Wt Wt+1

Summary causal graph (SCG)

X Y

Z

W

SCGs can contain cycles
Each vertex does not map to one single random variable
There might exists many ADMGs compatible with one SCG

Assaad, Devijver, and Gaussier, “Survey and Evaluation of Causal Discovery
Methods for Time Series”. JAIR, 2022

Causal reasoning with cyclic graphs Cluster DMGs over ADMGs Summary causal graphs 12 / 33



ADMGs with time and summary causal graphs

Zt−2 Zt−1 Zt Zt+1

Xt−2 Xt−1 Xt Xt+1

Yt−2 Yt−1 Yt Yt+1

Wt−2 Wt−1 Wt Wt+1

Summary causal graph (SCG)

X Y

Z

W

SCGs can contain cycles

Each vertex does not map to one single random variable
There might exists many ADMGs compatible with one SCG

Assaad, Devijver, and Gaussier, “Survey and Evaluation of Causal Discovery
Methods for Time Series”. JAIR, 2022

Causal reasoning with cyclic graphs Cluster DMGs over ADMGs Summary causal graphs 12 / 33



ADMGs with time and summary causal graphs

Zt−2 Zt−1 Zt Zt+1

Xt−2 Xt−1 Xt Xt+1

Yt−2 Yt−1 Yt Yt+1

Wt−2 Wt−1 Wt Wt+1

Summary causal graph (SCG)

X Y

Z

W

SCGs can contain cycles
Each vertex does not map to one single random variable

There might exists many ADMGs compatible with one SCG

Assaad, Devijver, and Gaussier, “Survey and Evaluation of Causal Discovery
Methods for Time Series”. JAIR, 2022

Causal reasoning with cyclic graphs Cluster DMGs over ADMGs Summary causal graphs 12 / 33



ADMGs with time and summary causal graphs

Zt−2 Zt−1 Zt Zt+1

Xt−2 Xt−1 Xt Xt+1

Yt−2 Yt−1 Yt Yt+1

Wt−2 Wt−1 Wt Wt+1

Summary causal graph (SCG)

X Y

Z

W

SCGs can contain cycles
Each vertex does not map to one single random variable
There might exists many ADMGs compatible with one SCG

Assaad, Devijver, and Gaussier, “Survey and Evaluation of Causal Discovery
Methods for Time Series”. JAIR, 2022

Causal reasoning with cyclic graphs Cluster DMGs over ADMGs Summary causal graphs 12 / 33



Two types of total effects in C-DMGs

A micro total effect is a total effect from a single variable in a
cluster (e.g., Xt−γ) to another single variable (e.g., Yt). For
example: Pr (yt | do (xt−γ)).

X Y
Xt−2 Xt−1 Xt Xt+1

Yt−2 Yt−1 Yt Yt+1

A macro total effect is a total effect from a whole cluster (e.g.,
{Xt0 , Xt0+1, · · · , Xt−1, Xt}) to a whole other cluster (e.g.,
{Yt0 , Yt0+1, · · · , Yt−1, Yt}). For example:
Pr ({yt0 , yt0+1, · · · , yt−1, yt} | do ({xt0 , xt0+1, · · · , xt−1, xt})).

X Y
Xt−2 Xt−1 Xt Xt+1

Yt−2 Yt−1 Yt Yt+1

Ferreira and Assaad, “Identifying macro conditional independencies and
macro total effects in summary causal graphs with latent confounding”.
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Causal Reasoning

Macro causal effect Identification

C-DMG (e.g., SCGs)
Expert

or
Causal Discovery

Estimation

Data
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Definitions
Summary causal graphs
Causal tools



d-separation for C-DMGs over ADMGs

Is d-separation applicable for C-DMGs over ADMGs?

Yes!

Theorem
d-separation is valid in C-DMGs over ADMGs.

If a d-separation holds in a given C-DMG, then it holds in
every compatible ADMG.
If a d-separation does not hold in a given C-DMG, then
there exists a compatible ADMG in which it does not hold.
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Demo: d-separation for C-DMGs over ADMGs

X Z

W Y

X
?

|= G Y | Z,W
W ̸ |= GZ | Ω\{X}
W ̸ |= GZ | Ω ∪ {X}

X |= GY | Z,W
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do-calculus for C-DMGs over ADMGs

Is do-calculus applicable for C-DMGs over ADMGs?

Yes!

Theorem
The Rules 1-3 of the do-calculus are valid in C-DMGs over DMGs.

If a sequence of rules apply in a given C-DMG, then it
applies in every compatible ADMG.
If a sequence of rules of the do-calculus does not apply in
a given C-DMG, then there exists a compatible ADMG in
which it does not apply.
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Demo: do-calculus for C-DMGs over ADMGs

X ZW

Y

X Y

Z

W

U

P(y | do(x))
= P(y | x) (Rule 2)

P(y | do(x))

=
∑

w

P(y | do(x),w)P(w | do(x))

=
∑

w

P(y | do(x),do(w))P(w | x) (Rule 2) x2

=
∑

w

P(y | do(w))P(w | x) (Rule 3)

=
∑

w,x′P(y | do(w), x′)P(x′ | do(w))P(w | x)

=
∑
w,x′

P(y | w, x′)P(x′ | do(w))P(w | x) (Rule 2)

=
∑
w,x′

P(y | w, x′)P(x′)P(w | x) (Rule 3)
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Completeness of d-separation and do-calculus for
C-DMGs over ADMGs

Are the d-separation and do-calculus complete for C-DMGs
over ADMGs?

No!

Assumption: For every cycle, no two adjacent clusters are of
size 1. Then, Yes!

X Y

Z

X Y

Z1 Z2
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Hedge for C-DMGs over ADMGs

Is the hedge criterion applicable for C-DMGs over ADMGs?

No!

X Y

Xt−2 Xt−1 Xt Xt+1

Yt−2 Yt−1 Yt Yt+1

Xt−2 Xt−1 Xt Xt+1

Yt−2 Yt−1 Yt Yt+1
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SC-Hedges for C-DMGs over ADMGs

Consider an C-DMG Gs. The SC-projection Hs of Gs is the graph
that includes all vertices and edges from Gs, plus a bidirected
dashed edge between each pair X, Y ∈ S such that
X ∈ Scc (Y,G) = De (Y,Gs) ∩ An (Y,Gs) and X ̸= Y.

X Y

C-DMG
X Y

SC-projection

Theorem
Consider that Hs is the SC-projection of the C-DMG Gs.
P(y | do(x)) is not identifiable in Gs if there exists a hedge for
the ordered pair (X,Y) in Hs.
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What about micro-queries?

Reminder:
A macro causal effect is a causal effect from a whole
cluster X to a another whole cluster Y, e.g.,
Pr (Yt0 , Yt0+1, · · · , Yt−1, Yt | do (Xt0 , Xt0+1, · · · , Xt−1, Xt)).
A micro causal effect is a total effect from a single variable
X to another single variable Y, e.g., Pr (yt | do (xt−γ)).

Can we identify micro causal effects in C-DMGs over ADMGs?

In specific cases and/or with prior knowledge, such as time,
then yes!
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What about micro-queries?

Can we identify micro causal effects in C-DMGs over ADMGs?

In specific cases and/or with prior knowledge, such as time,
then yes!

Assaad et al., “Identifiability of total effects from abstractions of time
series causal graphs”.
Assaad, “Towards identifiability of micro total effects in summary causal
graphs with latent confounding: extension of the front-door criterion”.
Ferreira and Assaad, “Identifiability of Direct Effects from Summary
Causal Graphs”.
Ferreira and Assaad, “Average Controlled and Average Natural Micro
Direct Effects in Summary Causal Graphs”.
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Input/Output SCMs

i/o SCM

∀x, ξx ← Dx
A := fA(ξa, ξab)
B := fB(A,D, E, ξb, ξab)
C := fC(B, ξc)
D := fD(C, ξd)
E := fE(C, ξe)

(B, C,D) := f(B,C,D)(A, E, ξb, ξab, ξc, ξd)
(B, C, E) := f(B,C,E)(A,D, ξb, ξab, ξc, ξe)

(B, C,D, E) := f(B,C,D)(A, ξb, ξab, ξc, ξd, ξe)

A

B

C

D E

Assumption: Compatibility of the generating processes in
cycles.

e.g., (b, c,d) = f(B,C,D)(a, e, ξb, ξab, ξc, ξd) =⇒ b = fB(a,d, e, ξb, ξab)
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Input/Output SCMs

i/o SCM
Acyclic Directed Mixed

Graph (DMG)

∀x, ξx ← Dx
A := fA(ξa, ξab)
B := fB(A,D, E, ξb, ξab)
C := fC(B, ξc)
D := fD(C, ξd)
E := fE(C, ξe)

(B, C,D) := f(B,C,D)(A, E, ξb, ξab, ξc, ξd)
(B, C, E) := f(B,C,E)(A,D, ξb, ξab, ξc, ξe)

(B, C,D, E) := f(B,C,D)(A, ξb, ξab, ξc, ξd, ξe)

A

B

C

D E

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent
Confounders and Selection Bias”

Causal reasoning with cyclic graphs The Input/Output SCM framework Definitions 23 / 33



Input/Output SCMs

i/o SCM Directed Mixed Graph (DMG)

∀x, ξx ← Dx
A := fA(ξa, ξab)
B := fB(A,D, E, ξb, ξab)
C := fC(B, ξc)
D:= d
E := fE(C, ξe)
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A

B

C

D E

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent
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sigma-separation

Strongly connected component: Scc (V,G) := An (V,G) ∩ De (V,G)

A walk π̃ = ⟨V1, · · · , Vn⟩ is said to be σ-blocked by a set of
vertices Z ⊆ V if:

1. ∃1 < i < n such that ⟨Vi−1∗→Vi← ∗Vi+1⟩ ⊆ π̃ and Vi /∈ Z, or
2. ∃1 < i < n such that ⟨Vi−1 ← Vi← ∗Vi+1⟩ ⊆ π̃ and Vi ∈ Z\Scc

(
Vi−1,G

)
, or

3. ∃1 < i < n such that ⟨Vi−1∗→Vi → Vi+1⟩ ⊆ π̃ and Vi ∈ Z\Scc
(
Vi+1,G

)
, or

4. ∃1 < i < n such that ⟨Vi−1 ← Vi → Vi+1⟩ ⊆ π̃ and
Vi ∈ Z\

(
Scc

(
Vi−1,G

)
∩ Scc

(
Vi+1,G

))
.

X and Y are σ-separated by Z if every walk between X and Y is
blocked by Z and we write (X |= σY | Z)G .

Theorem
(X |= σY | Z)G ⇒ X |= PrY | Z

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent
Confounders and Selection Bias”. PMLR, 2020.
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do-calculus for DMGs

The σ-based do-calculus consists of three rules:
Rule 1 P(y|do(x), z,w) = P(y|do(x),w) if (Y |= σZ | X,W)GX

Rule 2 P(y|do(x, z),w) = P(y|do(x), z,w) if (Y |= σZ | X,W)GXZ

Rule 3 P(y|do(x, z),w) = P(y|do(x),w) if (Y |= σZ | X,W)GXZ(W)

Theorem
P(y | do(x)) is identifiable if and only if there exists a finite
sequence of transformations, each conforming to either one of
the Rules 1-3 or some standard probability manipulations, that
reduces P(y | do(x)) into a do-free formula.

The do-calculus is sound!

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent
Confounders and Selection Bias”. PMLR, 2020.
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Cluster DMGs over DMGs

DMG C-DMG over DMGs
A

B C

D

E F

G

H I J

A

B, C

D, E, F,G

H I, J

When clustering, cycles can:
"disappear" (e.g., I→ J→ I) and/or
"remain" (e.g., C → F → D→ C) and/or
"appear" (e.g., A→ (B, C)→ A).

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs over DMGs.
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σ-separation for C-DMGs over DMGs

Is σ-separation applicable for C-DMGs over DMGs?

Yes!

Theorem
σ-separation is valid in C-DMGs over DMGs.

If a σ-separation holds in a given C-DMG, then it holds in
every compatible DMG.
If a σ-separation does not hold in a given C-DMG, then
there exists a compatible DMG in which it does not hold.

Causal reasoning with cyclic graphs Cluster DMGs over DMGs Causal tools 27 / 33



σ-separation for C-DMGs over DMGs

Is σ-separation applicable for C-DMGs over DMGs?
Yes!

Theorem
σ-separation is valid in C-DMGs over DMGs.

If a σ-separation holds in a given C-DMG, then it holds in
every compatible DMG.
If a σ-separation does not hold in a given C-DMG, then
there exists a compatible DMG in which it does not hold.

Causal reasoning with cyclic graphs Cluster DMGs over DMGs Causal tools 27 / 33



σ-separation for C-DMGs over DMGs

Is σ-separation applicable for C-DMGs over DMGs?
Yes!

Theorem
σ-separation is valid in C-DMGs over DMGs.

If a σ-separation holds in a given C-DMG, then it holds in
every compatible DMG.
If a σ-separation does not hold in a given C-DMG, then
there exists a compatible DMG in which it does not hold.

Causal reasoning with cyclic graphs Cluster DMGs over DMGs Causal tools 27 / 33



σ-based do-calculus for C-DMGs over DMGs

Is σ-based do-calculus applicable for C-DMGs over DMGs?

Yes!

Theorem
The Rules 1-3 of the do-calculus are valid in C-DMGs over DMGs.

If a sequence of rules apply in a given C-DMG, then it
applies in every compatible DMG.
If a sequence of rules of the do-calculus does not apply in
a given C-DMG, then there exists a compatible DMG in
which it does not apply.

Causal reasoning with cyclic graphs Cluster DMGs over DMGs Causal tools 28 / 33



σ-based do-calculus for C-DMGs over DMGs

Is σ-based do-calculus applicable for C-DMGs over DMGs?
Yes!

Theorem
The Rules 1-3 of the do-calculus are valid in C-DMGs over DMGs.

If a sequence of rules apply in a given C-DMG, then it
applies in every compatible DMG.
If a sequence of rules of the do-calculus does not apply in
a given C-DMG, then there exists a compatible DMG in
which it does not apply.

Causal reasoning with cyclic graphs Cluster DMGs over DMGs Causal tools 28 / 33



σ-based do-calculus for C-DMGs over DMGs

Is σ-based do-calculus applicable for C-DMGs over DMGs?
Yes!

Theorem
The Rules 1-3 of the do-calculus are valid in C-DMGs over DMGs.

If a sequence of rules apply in a given C-DMG, then it
applies in every compatible DMG.
If a sequence of rules of the do-calculus does not apply in
a given C-DMG, then there exists a compatible DMG in
which it does not apply.

Causal reasoning with cyclic graphs Cluster DMGs over DMGs Causal tools 28 / 33



5
Conclusion



Key Message

Use causal graphs !
Even if the causal graph is not fully specified,
Even if the causal graph is cyclic.

Now, there exist tools which accomodate these cases.
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