

CAUSAL REASONING WITH CYCLIC GRAPHS

SIMON FERREIRA simon.ferreira@sorbonne-universite.fr

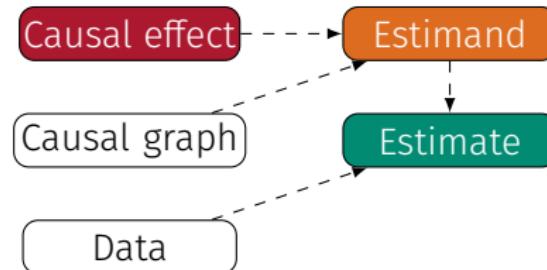
L'INSTITUT PIERRE LOUIS D'ÉPIDÉMIOLOGIE ET DE SANTÉ
PUBLIQUE, INSERM, SORBONNE UNIVERSITÉ

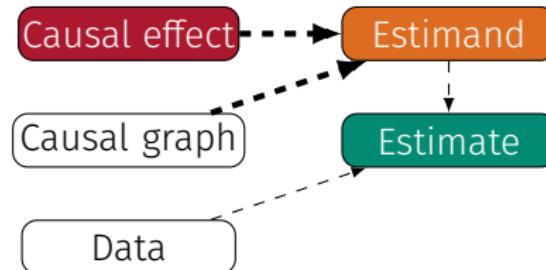
Nov, 2025

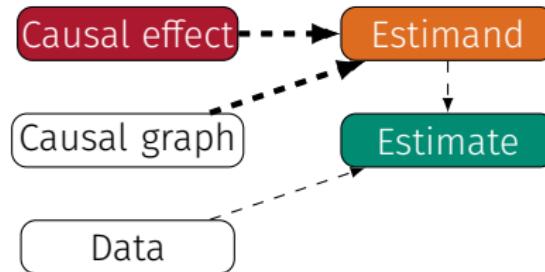
- 1 The SCM framework
- 2 Cluster DMGs over ADMGs
 - Definitions
 - Summary causal graphs
 - Causal tools
- 3 The Input/Output SCM framework
 - Definitions
 - Causal tools in DMGs
- 4 Cluster DMGs over DMGs
 - Definitions
 - Causal tools
- 5 Conclusion

1

THE SCM FRAMEWORK







The causal effect is said to be **identifiable** if it is uniquely computable from $P(\mathbb{V})$.

Total effect

$$\begin{aligned} &= \mathbb{E}(Y \mid \text{do}(X = x)) - \mathbb{E}(Y \mid \text{do}(X = x')) \\ &\sim P(y \mid \text{do}(x)) \end{aligned}$$

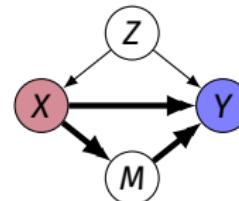
Where $\text{do}(\cdot)$ is an operator representing an intervention.

Pearl, "Causal diagrams for empirical research". Biometrika, 1995

Total effect

$$\begin{aligned}
 &= \mathbb{E}(Y \mid \text{do}(X = x)) - \mathbb{E}(Y \mid \text{do}(X = x')) \\
 &\sim P(y \mid \text{do}(x))
 \end{aligned}$$

Where $\text{do}(\cdot)$ is an operator representing an intervention.



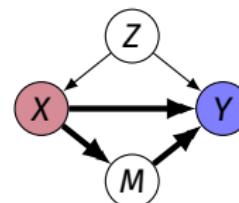
$P(y \mid \text{do}(x))$ is **identifiable** if it is uniquely computable from a **positive observational distribution $P(V)$** .

Pearl, "Causal diagrams for empirical research". Biometrika, 1995

Total effect

$$\begin{aligned}
 &= \mathbb{E}(Y \mid \text{do}(X = x)) - \mathbb{E}(Y \mid \text{do}(X = x')) \\
 &\sim P(y \mid \text{do}(x))
 \end{aligned}$$

Where $\text{do}(\cdot)$ is an operator representing an intervention.



$P(y \mid \text{do}(x))$ is **identifiable** if it is uniquely computable from a **positive observational distribution** $P(V)$.

The **do-calculus** is a **sound and complete** for identification.

Pearl, "Causal diagrams for empirical research". Biometrika, 1995

Structural Causal Model

$$\forall x, \xi_x \leftarrow \mathcal{D}_x$$

$$A := f_A(\xi_a, \xi_{ab})$$

$$G := f_G(\xi_g)$$

$$H := f_H(G, \xi_h)$$

$$I := f_I(G, \xi_i)$$

$$B := f_B(A, H, \xi_b, \xi_{ab})$$

$$C := f_C(A, B, I, \xi_c)$$

$$F := f_F(C, G, \xi_f)$$

$$D := f_D(C, F, \xi_d)$$

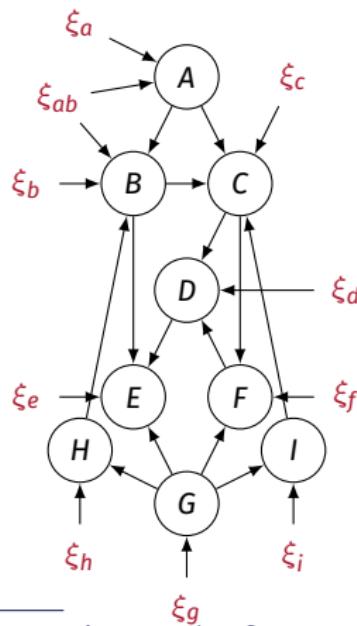
$$E := f_E(B, D, G, \xi_e)$$

Pearl, Causality: Models, Reasoning, and Inference. Cambridge University Press, 2009

Structural Causal Model

$$\begin{aligned}\forall x, \xi_x &\leftarrow \mathcal{D}_x \\ A &:= f_A(\xi_a, \xi_{ab}) \\ G &:= f_G(\xi_g) \\ H &:= f_H(G, \xi_h) \\ I &:= f_I(G, \xi_i) \\ B &:= f_B(A, H, \xi_b, \xi_{ab}) \\ C &:= f_C(A, B, I, \xi_c) \\ F &:= f_F(C, G, \xi_f) \\ D &:= f_D(C, F, \xi_d) \\ E &:= f_E(B, D, G, \xi_e)\end{aligned}$$

Directed Acyclic Graph (DAG)

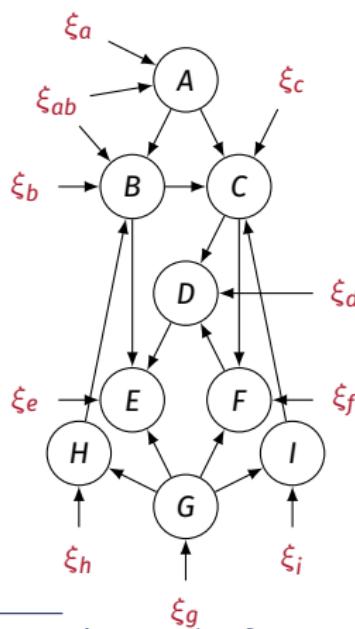


Pearl, Causality: Models, Reasoning, and Inference. Cambridge University Press, 2009

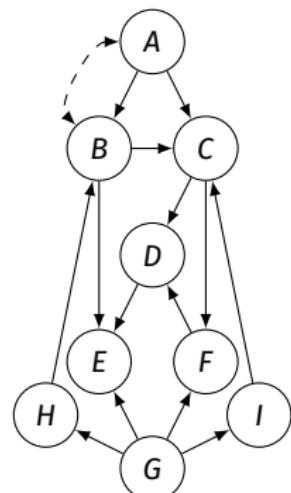
Structural Causal Model

$$\begin{aligned} \forall x, \xi_x &\leftarrow \mathcal{D}_x \\ A &:= f_A(\xi_a, \xi_{ab}) \\ G &:= f_G(\xi_g) \\ H &:= f_H(G, \xi_h) \\ I &:= f_I(G, \xi_i) \\ B &:= f_B(A, H, \xi_b, \xi_{ab}) \\ C &:= f_C(A, B, I, \xi_c) \\ F &:= f_F(C, G, \xi_f) \\ D &:= f_D(C, F, \xi_d) \\ E &:= f_E(B, D, G, \xi_e) \end{aligned}$$

Directed Acyclic Graph (DAG)



Acyclic Directed Mixed Graph (ADMG)



Pearl, Causality: Models, Reasoning, and Inference. Cambridge University Press, 2009

Structural Causal Model

$$\forall x, \xi_x \leftarrow \mathcal{D}_x$$

$$A := f_A(\xi_a, \xi_{ab})$$

$$G := f_G(\xi_g)$$

$$H := f_H(G, \xi_h)$$

$$I := f_I(G, \xi_i)$$

$$B := b$$

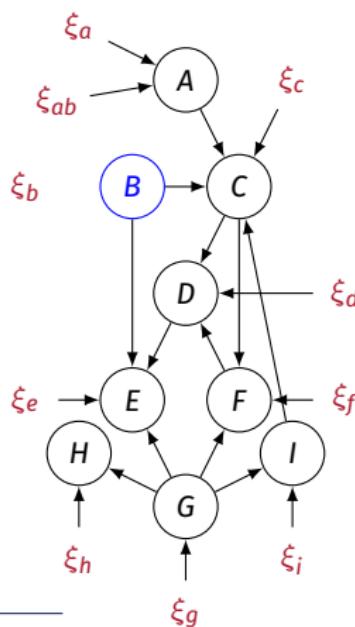
$$C := f_c(A, B, I, \xi_c)$$

$$F := f_F(C, G, \xi_f)$$

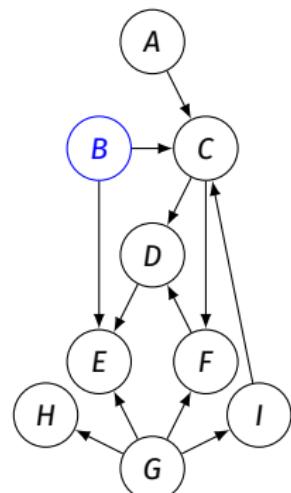
$$D := f_D(C, F, \xi_d)$$

$$E := f_E(B, D, G, \xi_e)$$

Directed Acyclic Graph (DAG)



Acyclic Directed Mixed Graph (ADMG)



Pearl, Causality: Models, Reasoning, and Inference. Cambridge University Press, 2009

A path is said to be **blocked** by a set of vertices $\mathbb{Z} \subset \mathbb{V}$ if:

- it contains a chain $\langle A \rightarrow B \rightarrow C \rangle$ or $\langle A \leftarrow B \leftarrow C \rangle$ or a fork $\langle A \leftarrow B \rightarrow C \rangle$ and $B \in \mathbb{Z}$; or
- it contains a collider $\langle A \rightarrow B \leftarrow C \rangle$ such that no descendant of B is in \mathbb{Z} .

Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc. 1988

A path is said to be **blocked** by a set of vertices $\mathbb{Z} \subset \mathbb{V}$ if:

- it contains a chain $\langle A \rightarrow B \rightarrow C \rangle$ or $\langle A \leftarrow B \leftarrow C \rangle$ or a fork $\langle A \leftarrow B \rightarrow C \rangle$ and $B \in \mathbb{Z}$; or
- it contains a collider $\langle A \rightarrow B \leftarrow C \rangle$ such that no descendant of B is in \mathbb{Z} .

\mathbb{X} and \mathbb{Y} are **d-separated** by \mathbb{Z} if every path between \mathbb{X} and \mathbb{Y} is blocked by \mathbb{Z} and we write $(\mathbb{X} \perp\!\!\!\perp_d \mathbb{Y} \mid \mathbb{Z})_{\mathcal{G}}$.

Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc. 1988

A path is said to be **blocked** by a set of vertices $\mathbb{Z} \subset \mathbb{V}$ if:

- it contains a chain $\langle A \rightarrow B \rightarrow C \rangle$ or $\langle A \leftarrow B \leftarrow C \rangle$ or a fork $\langle A \leftarrow B \rightarrow C \rangle$ and $B \in \mathbb{Z}$; or
- it contains a collider $\langle A \rightarrow B \leftarrow C \rangle$ such that no descendant of B is in \mathbb{Z} .

\mathbb{X} and \mathbb{Y} are **d-separated** by \mathbb{Z} if every path between \mathbb{X} and \mathbb{Y} is blocked by \mathbb{Z} and we write $(\mathbb{X} \perp\!\!\!\perp_d \mathbb{Y} \mid \mathbb{Z})_{\mathcal{G}}$.

Theorem

$$(\mathbb{X} \perp\!\!\!\perp_d \mathbb{Y} \mid \mathbb{Z})_{\mathcal{G}} \Rightarrow \mathbb{X} \perp\!\!\!\perp_{\text{Pr}} \mathbb{Y} \mid \mathbb{Z}$$

Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc. 1988

The **do-calculus** consists of three rules:

Rule 1 $P(y|do(x), z, w) = P(y|do(x), w)$ if $(Y \perp\!\!\!\perp_d Z | X, W)_{\mathcal{G}_{\overline{X}}}$

Rule 2 $P(y|do(x, z), w) = P(y|do(x), z, w)$ if $(Y \perp\!\!\!\perp_d Z | X, W)_{\mathcal{G}_{\overline{XZ}}}$

Rule 3 $P(y|do(x, z), w) = P(y|do(x), w)$ if $(Y \perp\!\!\!\perp_d Z | X, W)_{\mathcal{G}_{\overline{XZ(W)}}}$

Pearl, "Causal diagrams for empirical research". Biometrika, 1995

The **do-calculus** consists of three rules:

Rule 1 $P(y|do(x), z, w) = P(y|do(x), w)$ if $(Y \perp\!\!\!\perp_d Z | X, W)_{\mathcal{G}_{\overline{X}}}$

Rule 2 $P(y|do(x, z), w) = P(y|do(x), z, w)$ if $(Y \perp\!\!\!\perp_d Z | X, W)_{\mathcal{G}_{\overline{X}Z}}$

Rule 3 $P(y|do(x, z), w) = P(y|do(x), w)$ if $(Y \perp\!\!\!\perp_d Z | X, W)_{\mathcal{G}_{\overline{XZ}(W)}}$

Theorem

$P(y | do(x))$ is identifiable if and only if there exists a finite sequence of transformations, each conforming to either one of the Rules 1-3 or some standard probability manipulations, that reduces $P(y | do(x))$ into a do-free formula.

Pearl, "Causal diagrams for empirical research". Biometrika, 1995

The **do-calculus** consists of three rules:

Rule 1 $P(y|do(x), z, w) = P(y|do(x), w)$ if $(Y \perp\!\!\!\perp_d Z | X, W)_{\mathcal{G}_{\overline{X}}}$

Rule 2 $P(y|do(x, z), w) = P(y|do(x), z, w)$ if $(Y \perp\!\!\!\perp_d Z | X, W)_{\mathcal{G}_{\overline{X}Z}}$

Rule 3 $P(y|do(x, z), w) = P(y|do(x), w)$ if $(Y \perp\!\!\!\perp_d Z | X, W)_{\mathcal{G}_{\overline{XZ}(W)}}$

Theorem

$P(y | do(x))$ is identifiable if and only if there exists a finite sequence of transformations, each conforming to either one of the Rules 1-3 or some standard probability manipulations, that reduces $P(y | do(x))$ into a do-free formula.

The do-calculus is sound and complete!

Pearl, "Causal diagrams for empirical research". Biometrika, 1995

Definition

A set of variables Z satisfies the back-door criterion relative to (X, Y) if:

- $Z \cap De(X, \mathcal{G}) = \emptyset$, and
- Z blocks every back-door path (i.e., $\langle X \leftarrow \dots Y \rangle$).

Definition

A set of variables Z satisfies the back-door criterion relative to (X, Y) if:

- $Z \cap De(X, G) = \emptyset$, and
- Z blocks every back-door path (i.e., $\langle X \leftarrow \dots Y \rangle$).

Theorem

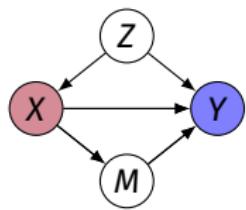
If Z satisfies the back-door criterion relative to (X, Y) then:

$$\Pr(y \mid do(x)) = \sum_z \Pr(y \mid x, z) \Pr(z)$$

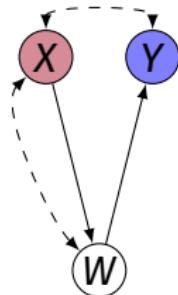
Definition

A set of variables Z satisfies the back-door criterion relative to (X, Y) if:

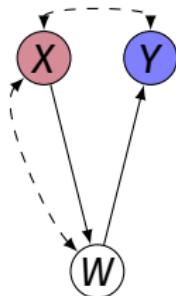
- $Z \cap De(X, \mathcal{G}) = \emptyset$, and
- Z blocks every back-door path (i.e., $\langle X \leftarrow \dots \leftarrow Y \rangle$).



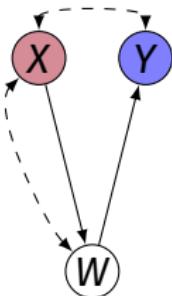
$$\begin{aligned}
 P(y \mid do(x)) &= \sum_z P(y \mid do(x), z) P(z \mid do(x)) \\
 &= \sum_z P(y \mid x, z) P(z \mid do(x)) \quad (\text{Rule 2}) \\
 &= \sum_z P(y \mid x, z) P(z) \quad (\text{Rule 3})
 \end{aligned}$$



$$P(y \mid do(z))$$

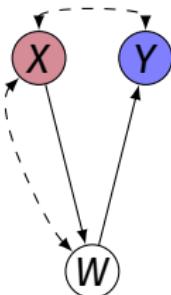


$$P(y \mid do(x)) = \sum_w P(y \mid do(x), w) P(w \mid do(x))$$

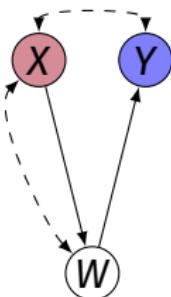


THE DO-CALCULUS CAN TIME BE CONSUMING

$$\begin{aligned} P(y \mid do(x)) &= \sum_w P(y \mid do(x), w) P(w \mid do(x)) \\ &= \sum_w P(y \mid do(x), do(w)) P(w \mid do(x)) \quad (\text{Rule 2}) \end{aligned}$$

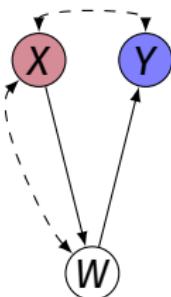


THE DO-CALCULUS CAN TIME BE CONSUMING



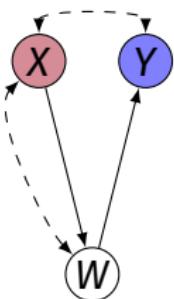
$$\begin{aligned}
 P(y \mid do(z)) &= \sum_w P(y \mid do(z), w) P(w \mid do(z)) \\
 &= \sum_w P(y \mid do(z), do(w)) P(w \mid do(z)) \quad (\text{Rule 2}) \\
 &= \sum_w P(y \mid do(w)) P(w \mid do(z)) \quad (\text{Rule 3})
 \end{aligned}$$

THE DO-CALCULUS CAN TIME BE CONSUMING

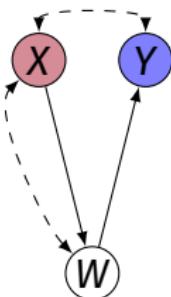


$$\begin{aligned}
 P(y \mid do(z)) &= \sum_w P(y \mid do(z), w) P(w \mid do(z)) \\
 &= \sum_w P(y \mid do(z), do(w)) P(w \mid do(z)) \quad (\text{Rule 2}) \\
 &= \sum_w P(y \mid do(w)) P(w \mid do(z)) \quad (\text{Rule 3}) \\
 &= \sum_{w,z'} P(y \mid do(w), z') P(z' \mid do(w)) P(w \mid do(z))
 \end{aligned}$$

THE DO-CALCULUS CAN TIME BE CONSUMING

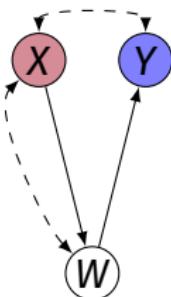


$$\begin{aligned}
 P(y \mid do(z)) &= \sum_w P(y \mid do(z), w) P(w \mid do(z)) \\
 &= \sum_w P(y \mid do(z), do(w)) P(w \mid do(z)) \quad (\text{Rule 2}) \\
 &= \sum_w P(y \mid do(w)) P(w \mid do(z)) \quad (\text{Rule 3}) \\
 &= \sum_{w, z'} P(y \mid do(w), z') P(z' \mid do(w)) P(w \mid do(z)) \\
 &= \sum_{w, z'} P(y \mid w, z') P(z' \mid do(w)) P(w \mid do(z)) \quad (\text{Rule 2})
 \end{aligned}$$

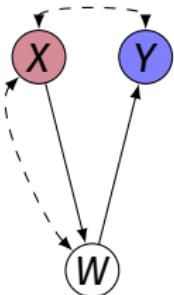


$$\begin{aligned}
 P(y \mid do(z)) &= \sum_w P(y \mid do(z), w) P(w \mid do(z)) \\
 &= \sum_w P(y \mid do(z), do(w)) P(w \mid do(z)) \quad (\text{Rule 2}) \\
 &= \sum_w P(y \mid do(w)) P(w \mid do(z)) \quad (\text{Rule 3}) \\
 &= \sum_{w, z'} P(y \mid do(w), z') P(z' \mid do(w)) P(w \mid do(z)) \\
 &= \sum_{w, z'} P(y \mid w, z') P(z' \mid do(w)) P(w \mid do(z)) \quad (\text{Rule 2}) \\
 &= \sum_{w, z'} P(y \mid w, z') P(z') P(w \mid do(z)) \quad (\text{Rule 3})
 \end{aligned}$$

THE DO-CALCULUS CAN TIME BE CONSUMING



$$\begin{aligned}
 P(y \mid do(z)) &= \sum_w P(y \mid do(z), w) P(w \mid do(z)) \\
 &= \sum_w P(y \mid do(z), do(w)) P(w \mid do(z)) \quad (\text{Rule 2}) \\
 &= \sum_w P(y \mid do(w)) P(w \mid do(z)) \quad (\text{Rule 3}) \\
 &= \sum_{w, z'} P(y \mid do(w), z') P(z' \mid do(w)) P(w \mid do(z)) \\
 &= \sum_{w, z'} P(y \mid w, z') P(z' \mid do(w)) P(w \mid do(z)) \quad (\text{Rule 2}) \\
 &= \sum_{w, z'} P(y \mid w, z') P(z') P(w \mid do(z)) \quad (\text{Rule 3}) \\
 &= \dots
 \end{aligned}$$



$$\begin{aligned}
 P(y \mid do(z)) &= \sum_w P(y \mid do(z), w) P(w \mid do(z)) \\
 &= \sum_w P(y \mid do(z), do(w)) P(w \mid do(z)) \quad (\text{Rule 2}) \\
 &= \sum_w P(y \mid do(w)) P(w \mid do(z)) \quad (\text{Rule 3}) \\
 &= \sum_{w, z'} P(y \mid do(w), z') P(z' \mid do(w)) P(w \mid do(z)) \\
 &= \sum_{w, z'} P(y \mid w, z') P(z' \mid do(w)) P(w \mid do(z)) \quad (\text{Rule 2}) \\
 &= \sum_{w, z'} P(y \mid w, z') P(z') P(w \mid do(z)) \quad (\text{Rule 3}) \\
 &= \dots
 \end{aligned}$$

In this specific case, the total effect is not identifiable
 \implies We can never find a do-free formula!

A **hedge** for $P(y | do(x))$ is a subgraph with specific graphical constraints related to X and Y .

Shpitser and Pearl, "Complete identification methods for the causal hierarchy". JMLR, 2008

A **hedge** for $P(y \mid do(x))$ is a subgraph with specific graphical constraints related to X and Y .

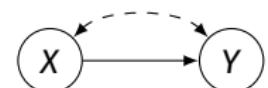
- no bidirected dashed edges \implies no hedges
- This graph is a hedge:

Shpitser and Pearl, "Complete identification methods for the causal hierarchy". JMLR, 2008

A **hedge** for $P(y | \text{do}(x))$ is a subgraph with specific graphical constraints related to X and Y .

- no bidirected dashed edges \implies no hedges

- This graph is a hedge:



Theorem

$P(y | \text{do}(x))$ is not identifiable in \mathcal{G} if and only if there is a hedge for the ordered pair (X, Y) in \mathcal{G} .

Shpitser and Pearl, "Complete identification methods for the causal hierarchy". JMLR, 2008

A **hedge** for $P(y \mid \text{do}(x))$ is a subgraph with specific graphical constraints related to \mathbb{X} and \mathbb{Y} .

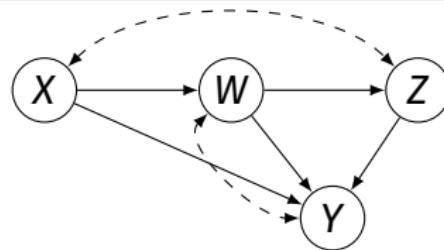
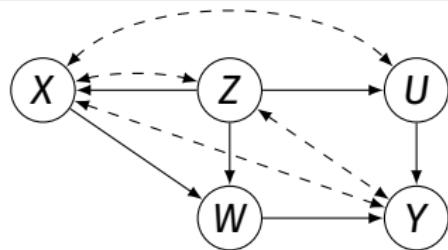
- no bidirected dashed edges \implies no hedges

- This graph is a hedge:



Theorem

$P(y \mid \text{do}(x))$ is not identifiable in \mathcal{G} if and only if there is a hedge for the ordered pair (\mathbb{X}, \mathbb{Y}) in \mathcal{G} .



Shpitser and Pearl, "Complete identification methods for the causal hierarchy". JMLR, 2008

HEDGE CRITERION FOR ADMGS: DEFINITION

C-component: Set of vertices which are all connected via bidirected arrows.



Figure: C-component

Forest: Acyclic graph in which every edge has at most one children.

We call roots the nodes with no children.

Figure: Forest

Hedge for (\mathbb{X}, \mathbb{Y}) : Pair of \mathbb{R} -rooted C-forests $(\mathcal{F}, \mathcal{F}')$ in the graph such that:

- $\mathbb{R} \subseteq An(\mathbb{Y}, \mathcal{G} \setminus \{V\})$
- $\mathcal{F} \subseteq \mathcal{F}'$
- $\mathcal{F} \cap \mathbb{X} = \emptyset$
- $\mathcal{F}' \cap \mathbb{X} \neq \emptyset$

2

CLUSTER DMGS OVER ADMGS

DEFINITIONS

SUMMARY CAUSAL GRAPHS

CAUSAL TOOLS

2

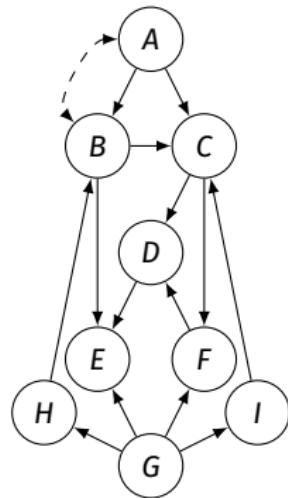
CLUSTER DMGS OVER ADMGS

DEFINITIONS

SUMMARY CAUSAL GRAPHS

CAUSAL TOOLS

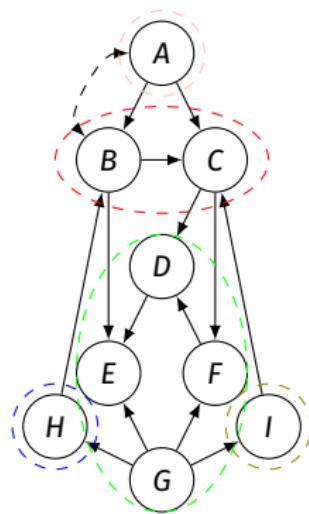
ADMG



C-DMG over ADMGs

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs.

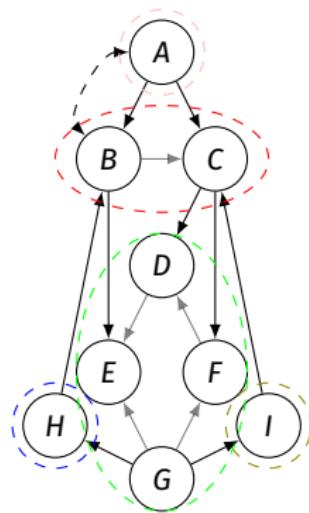
ADMG



C-DMG over ADMGs

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs.

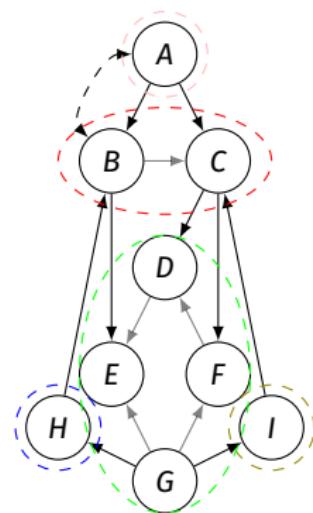
ADMG



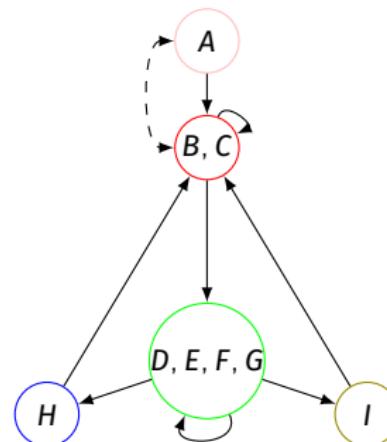
C-DMG over ADMGs

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs.

ADMG

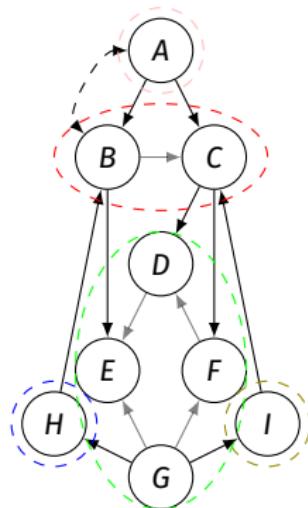


C-DMG over ADMGs

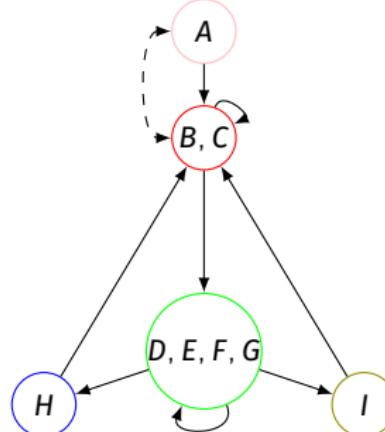


Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs.

ADMG



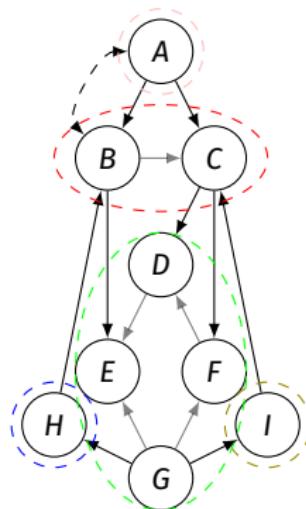
C-DMG over ADMGs



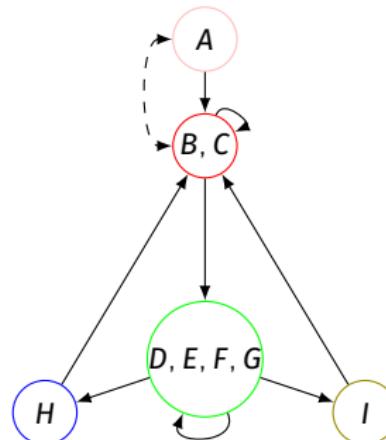
Cycles !

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs.

ADMG



C-DMG over ADMGs



Assumption: For every cycle (e.g., $(B, C) \rightarrow (D, E, F, G) \rightarrow (H) \rightarrow (B, C)$)
 no 2 adjacent clusters are of size 1.

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs.

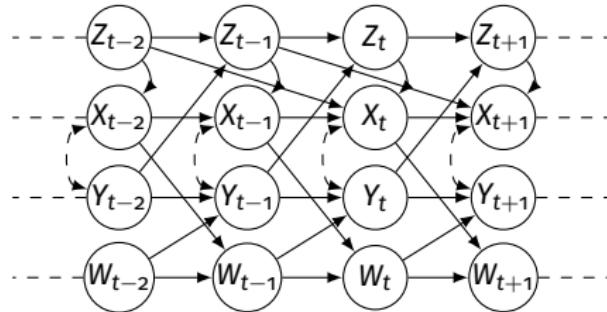
2

CLUSTER DMGS OVER ADMGS

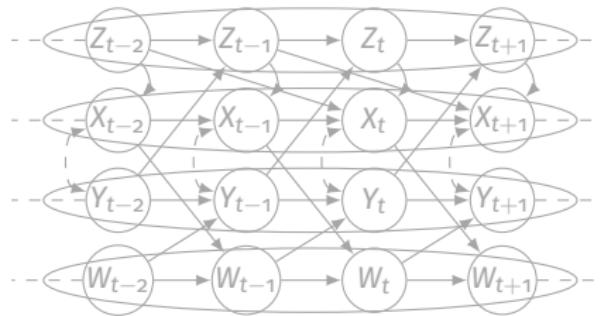
DEFINITIONS

SUMMARY CAUSAL GRAPHS

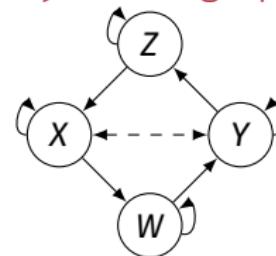
CAUSAL TOOLS



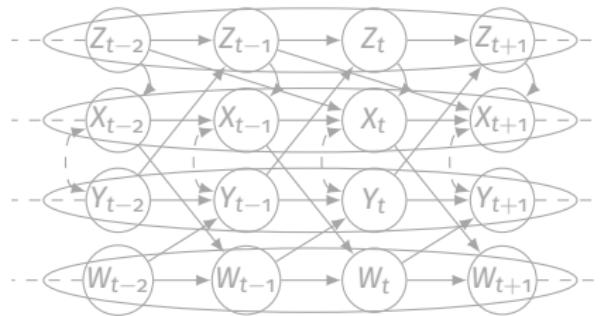
Assaad, Devijver, and Gaussier, "Survey and Evaluation of Causal Discovery Methods for Time Series". JAIR, 2022



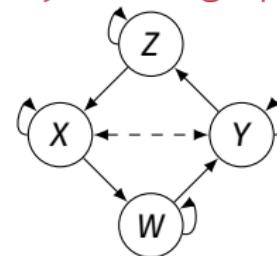
Summary causal graph (SCG)



Assaad, Devijver, and Gaussier, "Survey and Evaluation of Causal Discovery Methods for Time Series". JAIR, 2022

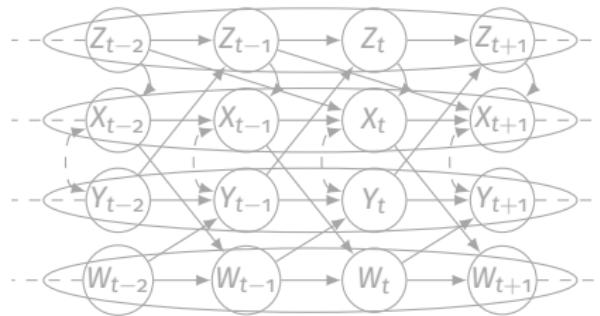


Summary causal graph (SCG)

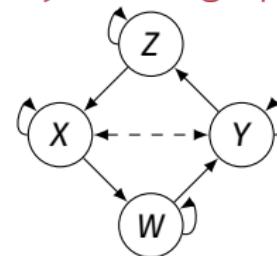


- SCGs can contain cycles

Assaad, Devijver, and Gaussier, "Survey and Evaluation of Causal Discovery Methods for Time Series". JAIR, 2022

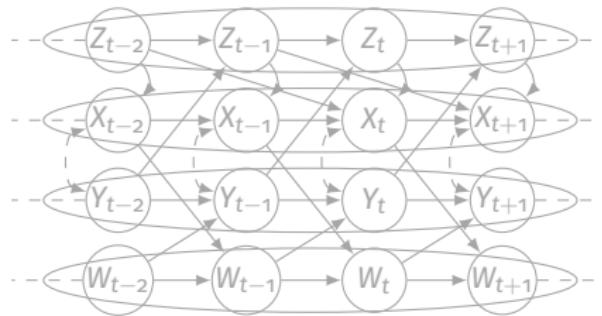


Summary causal graph (SCG)

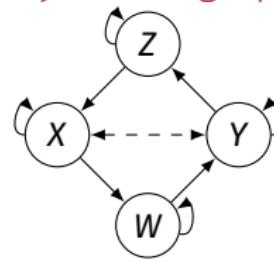


- SCGs can contain cycles
- Each vertex does not map to one single random variable

Assaad, Devijver, and Gaussier, "Survey and Evaluation of Causal Discovery Methods for Time Series". JAIR, 2022



Summary causal graph (SCG)



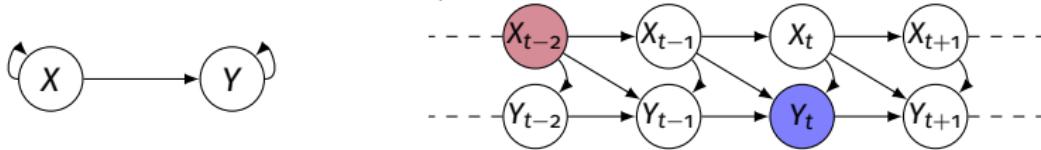
- SCGs can contain cycles
- Each vertex does not map to one single random variable
- There might exist many ADMGs compatible with one SCG

Assaad, Devijver, and Gaussier, "Survey and Evaluation of Causal Discovery Methods for Time Series". JAIR, 2022

A micro total effect is a total effect from a single variable in a cluster (e.g., $X_{t-\gamma}$) to another single variable (e.g., Y_t). For example: $\Pr(y_t \mid \text{do}(x_{t-\gamma}))$.

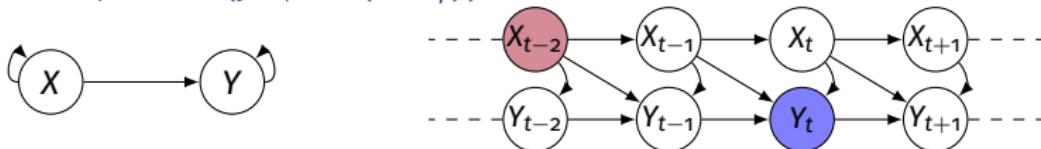
Ferreira and Assaad, "Identifying macro conditional independencies and macro total effects in summary causal graphs with latent confounding".

A micro total effect is a total effect from a single variable in a cluster (e.g., $X_{t-\gamma}$) to another single variable (e.g., Y_t). For example: $\Pr(y_t \mid \text{do}(x_{t-\gamma}))$.



Ferreira and Assaad, "Identifying macro conditional independencies and macro total effects in summary causal graphs with latent confounding".

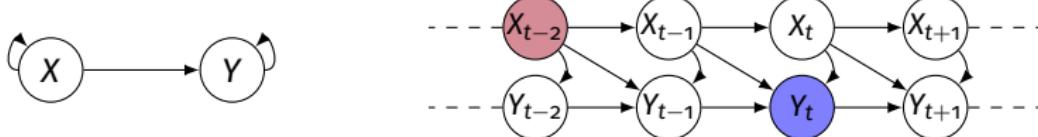
A micro total effect is a total effect from a single variable in a cluster (e.g., $X_{t-\gamma}$) to another single variable (e.g., Y_t). For example: $\Pr(y_t | \text{do}(x_{t-\gamma}))$.



A macro total effect is a total effect from a whole cluster (e.g., $\{X_{t_0}, X_{t_0+1}, \dots, X_{t-1}, X_t\}$) to a whole other cluster (e.g., $\{Y_{t_0}, Y_{t_0+1}, \dots, Y_{t-1}, Y_t\}$). For example:
 $\Pr(\{y_{t_0}, y_{t_0+1}, \dots, y_{t-1}, y_t\} | \text{do}(\{x_{t_0}, x_{t_0+1}, \dots, x_{t-1}, x_t\}))$.

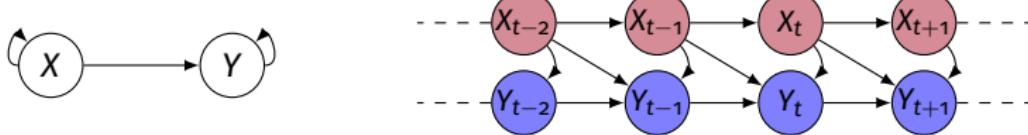
Ferreira and Assaad, "Identifying macro conditional independencies and macro total effects in summary causal graphs with latent confounding".

A micro total effect is a total effect from a single variable in a cluster (e.g., $X_{t-\gamma}$) to another single variable (e.g., Y_t). For example: $\Pr(y_t \mid \text{do}(x_{t-\gamma}))$.



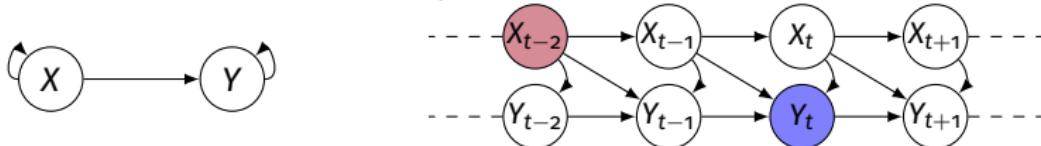
A macro total effect is a total effect from a whole cluster (e.g., $\{X_{t_0}, X_{t_0+1}, \dots, X_{t-1}, X_t\}$) to a whole other cluster (e.g., $\{Y_{t_0}, Y_{t_0+1}, \dots, Y_{t-1}, Y_t\}$). For example:

$\Pr(\{y_{t_0}, y_{t_0+1}, \dots, y_{t-1}, y_t\} \mid \text{do}(\{x_{t_0}, x_{t_0+1}, \dots, x_{t-1}, x_t\}))$.



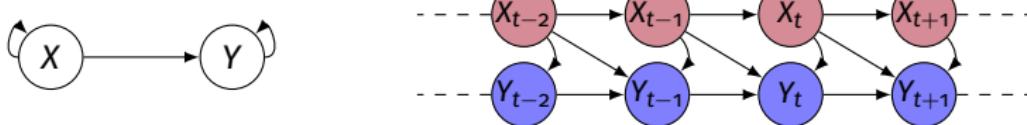
Ferreira and Assaad, "Identifying macro conditional independencies and macro total effects in summary causal graphs with latent confounding".

A micro total effect is a total effect from a single variable in a cluster (e.g., $X_{t-\gamma}$) to another single variable (e.g., Y_t). For example: $\Pr(y_t \mid \text{do}(x_{t-\gamma}))$.



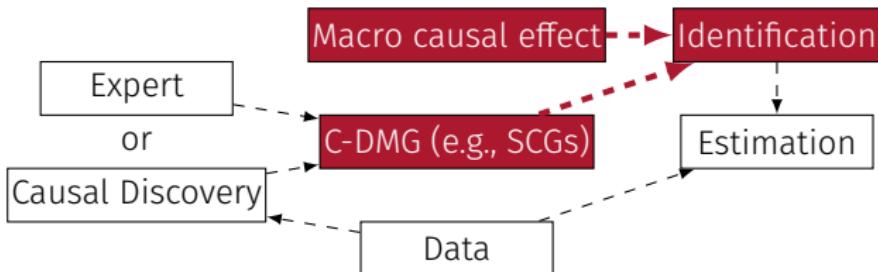
A macro total effect is a total effect from a whole cluster (e.g., $\{X_{t_0}, X_{t_0+1}, \dots, X_{t-1}, X_t\}$) to a whole other cluster (e.g., $\{Y_{t_0}, Y_{t_0+1}, \dots, Y_{t-1}, Y_t\}$). For example:

$\Pr(\{y_{t_0}, y_{t_0+1}, \dots, y_{t-1}, y_t\} \mid \text{do}(\{x_{t_0}, x_{t_0+1}, \dots, x_{t-1}, x_t\}))$.



Ferreira and Assaad, "Identifying macro conditional independencies and macro total effects in summary causal graphs with latent confounding".

CAUSAL REASONING



2

CLUSTER DMGS OVER ADMGS

DEFINITIONS

SUMMARY CAUSAL GRAPHS

CAUSAL TOOLS

Is d-separation applicable for C-DMGs over ADMGs?

Is d-separation applicable for C-DMGs over ADMGs?

Yes!

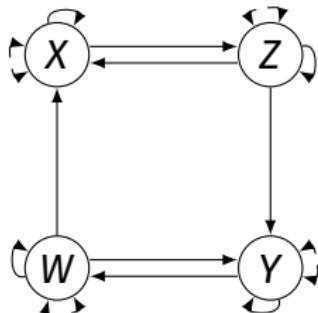
Is d-separation applicable for C-DMGs over ADMGs?

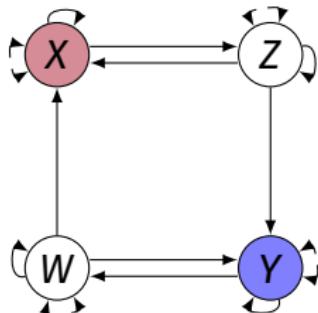
Yes!

Theorem

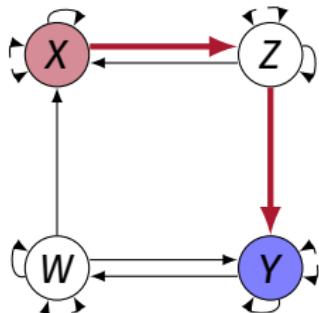
d-separation is valid in C-DMGs over ADMGs.

- *If a d-separation holds in a given C-DMG, then it holds in every compatible ADMG.*
- *If a d-separation does not hold in a given C-DMG, then there exists a compatible ADMG in which it does not hold.*



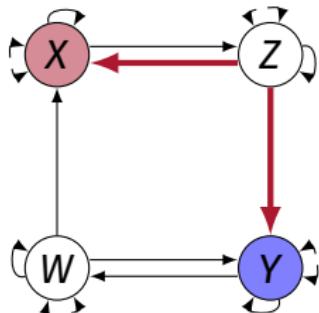


$$X \perp\!\!\!\perp_G Y \mid Z, W$$



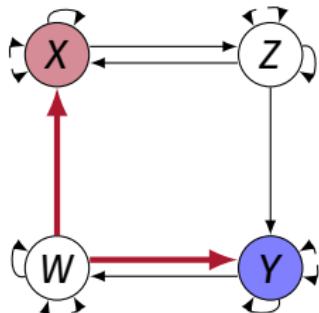
Is the path $\langle X \rightarrow Z \rightarrow Y \rangle$ blocked by $\{Z, W\}$?

$$X \perp\!\!\!\perp_G Y \mid Z, W \quad ?$$



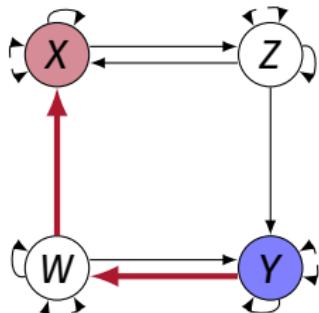
Is the path $\langle X \leftarrow Z \rightarrow Y \rangle$ blocked by $\{Z, W\}$?

$$X \perp\!\!\!\perp_G Y \mid Z, W \quad ?$$



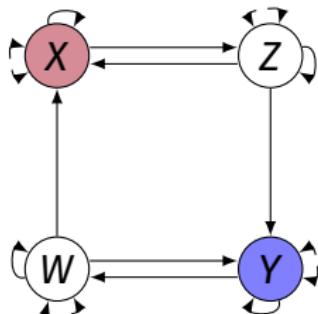
Is the path $\langle X \leftarrow W \rightarrow Y \rangle$ blocked by $\{Z, W\}$?

$$X \perp\!\!\!\perp_G Y \mid Z, W \quad ?$$

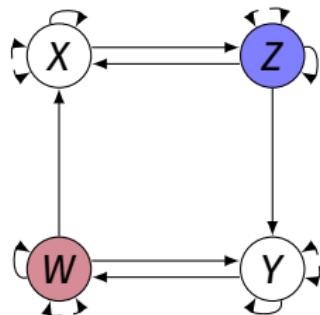


Is the path $\langle X \leftarrow W \leftarrow Y \rangle$ blocked by $\{Z, W\}$?

$$X \perp\!\!\!\perp_G Y \mid Z, W \quad ?$$

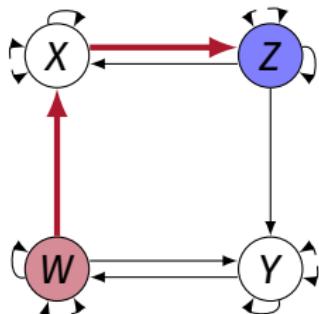


$$X \perp\!\!\!\perp_G Y \mid Z, W$$



$X \perp\!\!\!\perp_G Y \mid Z, W$

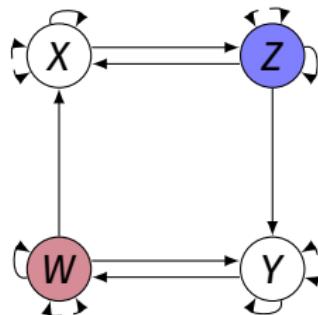
$W \stackrel{?}{\perp\!\!\!\perp_G} Z \mid \Omega \setminus \{X\}$



Is the path $\langle W \rightarrow X \rightarrow Z \rangle$ blocked by $\Omega \setminus \{X\}$?

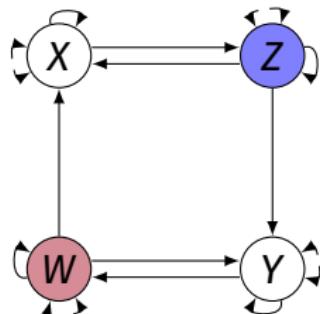
$$X \perp\!\!\!\perp_G Y \mid Z, W$$

$$W \stackrel{?}{\perp\!\!\!\perp}_G Z \mid \Omega \setminus \{X\}$$



$X \perp\!\!\!\perp_{\mathcal{G}} Y \mid Z, W$

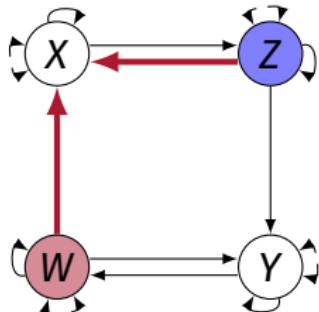
$W \not\perp\!\!\!\not\perp_{\mathcal{G}} Z \mid \Omega \setminus \{X\}$



$$X \perp\!\!\!\perp_g Y \mid Z, W$$

$$W \not\perp\!\!\!\not\perp_g Z \mid \Omega \setminus \{X\}$$

$$W \stackrel{?}{\perp\!\!\!\perp}_g Z \mid \Omega \cup \{X\}$$

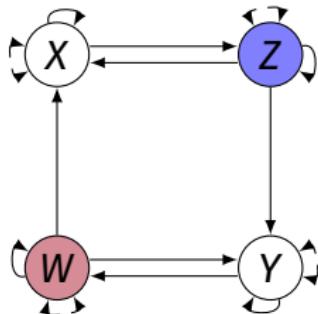


Is the path $\langle W \rightarrow X \leftarrow Z \rangle$ blocked by $\Omega \cup \{X\}$?

$$X \perp\!\!\!\perp_G Y \mid Z, W$$

$$W \not\perp\!\!\!\not\perp_G Z \mid \Omega \setminus \{X\}$$

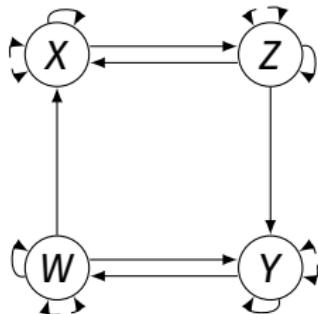
$$W \stackrel{?}{\perp\!\!\!\perp}_G Z \mid \Omega \cup \{X\}$$



$X \perp\!\!\!\perp_G Y \mid Z, W$

$W \not\perp\!\!\!\not\perp_G Z \mid \Omega \setminus \{X\}$

$W \not\perp\!\!\!\not\perp_G Z \mid \Omega \cup \{X\}$



$$X \perp\!\!\!\perp_G Y \mid Z, W$$

$$W \not\perp\!\!\!\perp_G Z \mid \Omega \setminus \{X\}$$

$$W \not\perp\!\!\!\perp_G Z \mid \Omega \cup \{X\}$$

$$X \perp\!\!\!\perp_G Y \mid Z, W$$

Is do-calculus applicable for C-DMGs over ADMGs?

Is do-calculus applicable for C-DMGs over ADMGs?

Yes!

Is do-calculus applicable for C-DMGs over ADMGs?

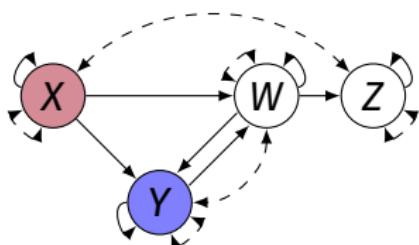
Yes!

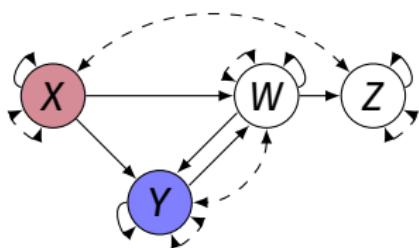
Theorem

The Rules 1-3 of the do-calculus are valid in C-DMGs over DMGs.

- If a sequence of rules apply in a given C-DMG, then it applies in every compatible ADMG.
- If a sequence of rules of the do-calculus does not apply in a given C-DMG, then there exists a compatible ADMG in which it does not apply.

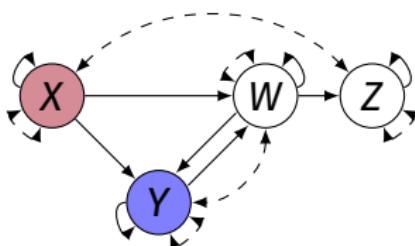
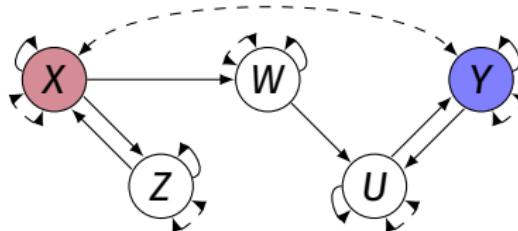
DEMO: DO-CALCULUS FOR C-DMGs OVER ADMGs





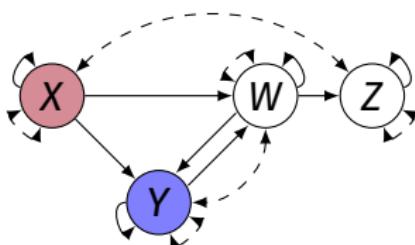
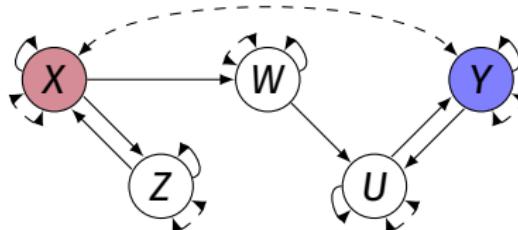
$$\begin{aligned} P(y \mid do(x)) \\ = P(y \mid \textcolor{red}{x}) \quad (\text{Rule 2}) \end{aligned}$$

DEMO: DO-CALCULUS FOR C-DMGs OVER ADMGs



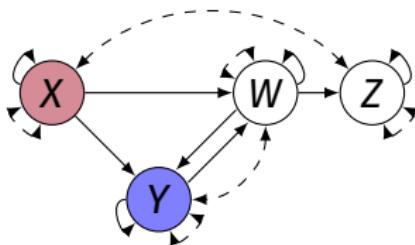
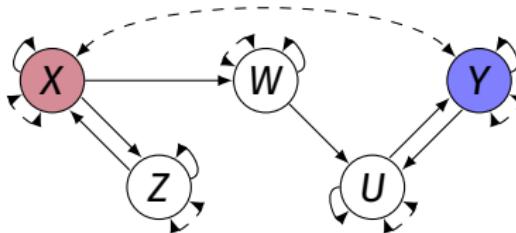
$$\begin{aligned}
 P(y \mid do(x)) \\
 = P(y \mid \text{red}) \quad (\text{Rule 2})
 \end{aligned}$$

DEMO: DO-CALCULUS FOR C-DMGs OVER ADMGs



$$P(y \mid do(z))$$

$$P(y \mid do(z)) \\ = P(y \mid \textcolor{red}{z}) \quad (\text{Rule 2})$$



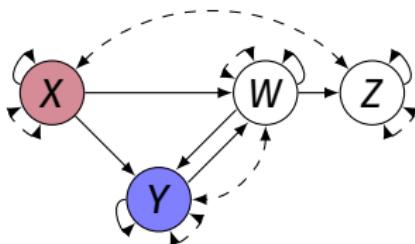
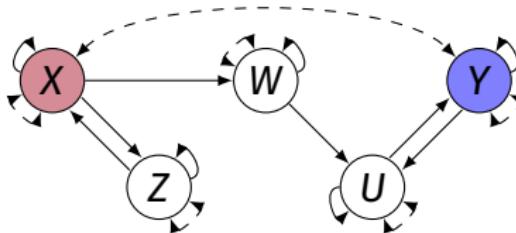
$$P(y \mid do(x))$$

$$= \sum_w P(y \mid do(x), w) P(w \mid do(x))$$

$$P(y \mid do(x))$$

$$= P(y \mid \textcolor{red}{x}) \quad (\text{Rule 2})$$

DEMO: DO-CALCULUS FOR C-DMGs OVER ADMGs



$$P(y \mid do(x))$$

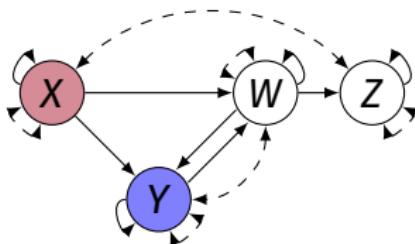
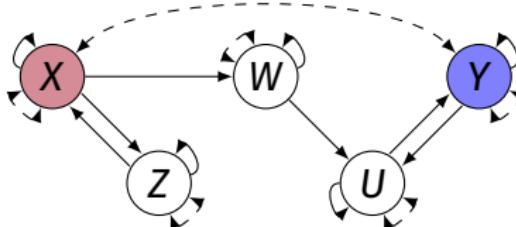
$$= \sum_w P(y \mid do(x), w) P(w \mid do(x))$$

$$= \sum_w P(y \mid do(x), do(w)) P(w \mid x) \quad (\text{Rule 2}) \times 2$$

$$P(y \mid do(x))$$

$$= P(y \mid x) \quad (\text{Rule 2})$$

DEMO: DO-CALCULUS FOR C-DMGs OVER ADMGs



$$P(y \mid do(x))$$

$$= \sum_w P(y \mid do(x), w) P(w \mid do(x))$$

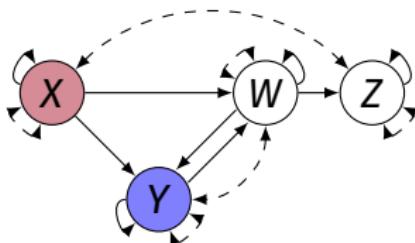
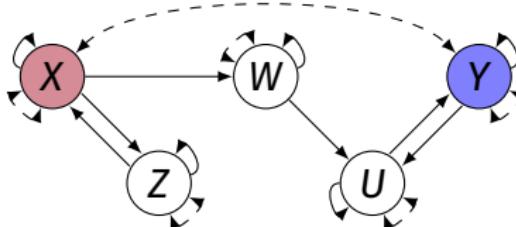
$$= \sum_w P(y \mid do(x), do(w)) P(w \mid x) \quad (\text{Rule 2}) \times 2$$

$$P(y \mid do(x))$$

$$= P(y \mid x) \quad (\text{Rule 2})$$

$$= \sum_w P(y \mid do(w)) P(w \mid x) \quad (\text{Rule 3})$$

DEMO: DO-CALCULUS FOR C-DMGs OVER ADMGs



$$P(y \mid do(x))$$

$$= \sum_w P(y \mid do(x), w) P(w \mid do(x))$$

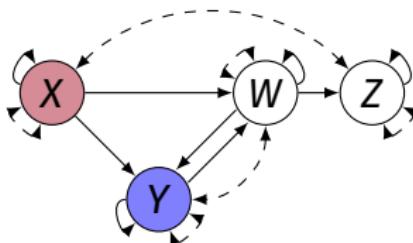
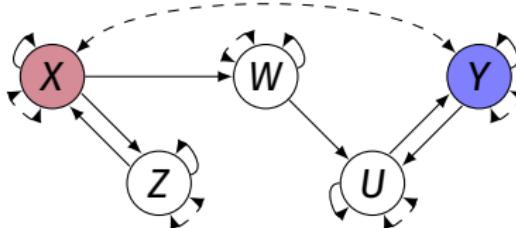
$$= \sum_w P(y \mid do(x), do(w)) P(w \mid x) \quad (\text{Rule 2}) \times 2$$

$$P(y \mid do(x))$$

$$= P(y \mid x) \quad (\text{Rule 2})$$

$$= \sum_w P(y \mid do(w)) P(w \mid x) \quad (\text{Rule 3})$$

$$= \sum_{w,x'} P(y \mid do(w), x') P(x' \mid do(w)) P(w \mid x)$$



$$P(y \mid do(x))$$

$$= \sum_w P(y \mid do(x), w) P(w \mid do(x))$$

$$= \sum_w P(y \mid do(x), do(w)) P(w \mid x) \quad (\text{Rule 2}) \times 2$$

$$P(y \mid do(x))$$

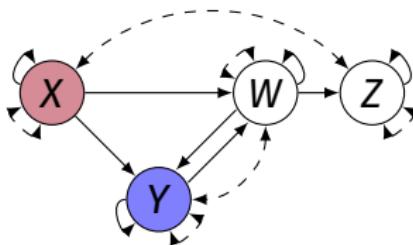
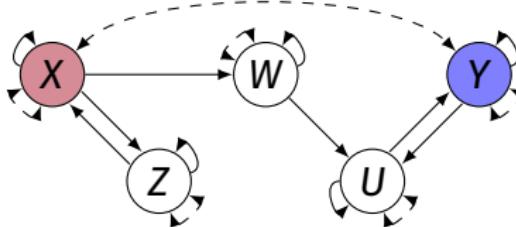
$$= P(y \mid x) \quad (\text{Rule 2})$$

$$= \sum_w P(y \mid do(w)) P(w \mid x) \quad (\text{Rule 3})$$

$$= \sum_{w, x'} P(y \mid do(w), x') P(x' \mid do(w)) P(w \mid x)$$

$$= \sum_{w, x'} P(y \mid w, x') P(x' \mid do(w)) P(w \mid x) \quad (\text{Rule 2})$$

DEMO: DO-CALCULUS FOR C-DMGs OVER ADMGs



$$P(y \mid do(\mathbf{z}))$$

$$= \sum_{\mathbf{w}} P(y \mid do(\mathbf{z}), \mathbf{w}) P(\mathbf{w} \mid do(\mathbf{z}))$$

$$= \sum_{\mathbf{w}} P(y \mid do(\mathbf{z}), do(\mathbf{w})) P(\mathbf{w} \mid \mathbf{z}) \quad (\text{Rule 2}) \times 2$$

$$= \sum_{\mathbf{w}} P(y \mid do(\mathbf{w})) P(\mathbf{w} \mid \mathbf{z}) \quad (\text{Rule 3})$$

$$= \sum_{\mathbf{w}, \mathbf{z}'} P(y \mid do(\mathbf{w}), \mathbf{z}') P(\mathbf{z}' \mid do(\mathbf{w})) P(\mathbf{w} \mid \mathbf{z})$$

$$= \sum_{\mathbf{w}, \mathbf{z}'} P(y \mid \mathbf{w}, \mathbf{z}') P(\mathbf{z}' \mid do(\mathbf{w})) P(\mathbf{w} \mid \mathbf{z}) \quad (\text{Rule 2})$$

$$= \sum_{\mathbf{w}, \mathbf{z}'} P(y \mid \mathbf{w}, \mathbf{z}') P(\mathbf{z}') P(\mathbf{w} \mid \mathbf{z}) \quad (\text{Rule 3})$$

$$P(y \mid do(\mathbf{z}))$$

$$= P(y \mid \mathbf{z}) \quad (\text{Rule 2})$$

COMPLETENESS OF D-SEPARATION AND DO-CALCULUS FOR C-DMGs OVER ADMGs

Are the d-separation and do-calculus complete for C-DMGs over ADMGs?

COMPLETENESS OF D-SEPARATION AND DO-CALCULUS FOR C-DMGs OVER ADMGs

Are the d-separation and do-calculus complete for C-DMGs over ADMGs? No!

COMPLETENESS OF D-SEPARATION AND DO-CALCULUS FOR C-DMGs OVER ADMGs

Are the d-separation and do-calculus complete for C-DMGs over ADMGs? No!

Assumption: For every cycle, no two adjacent clusters are of size 1.

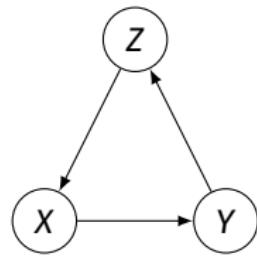
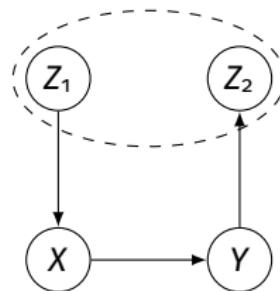
COMPLETENESS OF D-SEPARATION AND DO-CALCULUS FOR C-DMGs OVER ADMGs

Are the d-separation and do-calculus complete for C-DMGs over ADMGs? No!

Assumption: For every cycle, no two adjacent clusters are of size 1. Then, Yes!

Are the d-separation and do-calculus complete for C-DMGs over ADMGs? No!

Assumption: For every cycle, no two adjacent clusters are of size 1. Then, Yes!



Is the hedge criterion applicable for C-DMGs over ADMGs?

Is the hedge criterion applicable for C-DMGs over ADMGs?

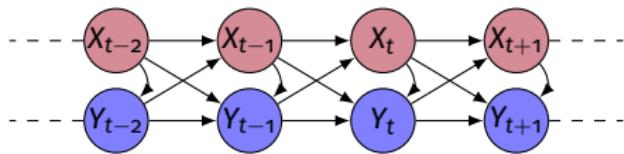
No!

Is the hedge criterion applicable for C-DMGs over ADMGs?

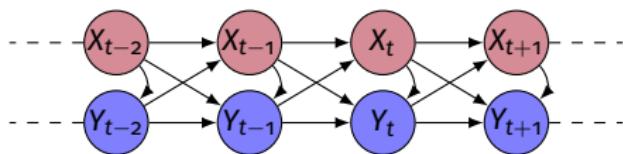
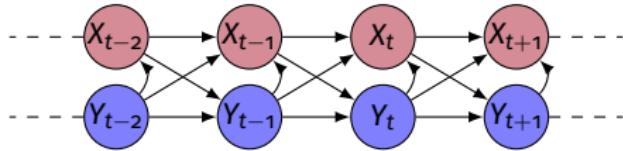
No!

Is the hedge criterion applicable for C-DMGs over ADMGs?

No!

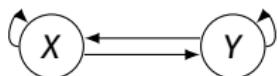


Is the hedge criterion applicable for C-DMGs over ADMGs?
No!



Consider an C-DMG \mathcal{G}^s . The **SC-projection** \mathcal{H}^s of \mathcal{G}^s is the graph that includes all vertices and edges from \mathcal{G}^s , plus a bidirected dashed edge between each pair $X, Y \in \mathbb{S}$ such that $X \in Scc(Y, \mathcal{G}) = De(Y, \mathcal{G}^s) \cap An(Y, \mathcal{G}^s)$ and $X \neq Y$.

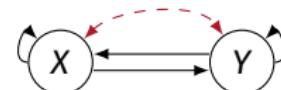
Consider an C-DMG \mathcal{G}^s . The **SC-projection** \mathcal{H}^s of \mathcal{G}^s is the graph that includes all vertices and edges from \mathcal{G}^s , plus a bidirected dashed edge between each pair $X, Y \in \mathbb{S}$ such that $X \in Scc(Y, \mathcal{G}) = De(Y, \mathcal{G}^s) \cap An(Y, \mathcal{G}^s)$ and $X \neq Y$.



C-DMG

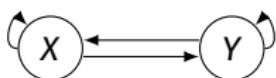
Consider an C-DMG \mathcal{G}^s . The **SC-projection** \mathcal{H}^s of \mathcal{G}^s is the graph that includes all vertices and edges from \mathcal{G}^s , plus a bidirected dashed edge between each pair $X, Y \in \mathbb{S}$ such that $X \in Scc(Y, \mathcal{G}) = De(Y, \mathcal{G}^s) \cap An(Y, \mathcal{G}^s)$ and $X \neq Y$.

C-DMG

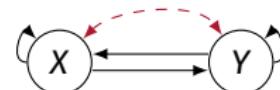


SC-projection

Consider an C-DMG \mathcal{G}^s . The **SC-projection** \mathcal{H}^s of \mathcal{G}^s is the graph that includes all vertices and edges from \mathcal{G}^s , plus a bidirected dashed edge between each pair $X, Y \in \mathbb{S}$ such that $X \in Scc(Y, \mathcal{G}) = De(Y, \mathcal{G}^s) \cap An(Y, \mathcal{G}^s)$ and $X \neq Y$.



C-DMG



SC-projection

Theorem

Consider that \mathcal{H}^s is the SC-projection of the C-DMG \mathcal{G}^s .

$P(y \mid \text{do}(x))$ is not identifiable in \mathcal{G}^s if there exists a hedge for the ordered pair (x, y) in \mathcal{H}^s .

Reminder:

- A macro causal effect is a causal effect from a whole cluster \mathbb{X} to another whole cluster \mathbb{Y} , e.g.,
$$\Pr(Y_{t_0}, Y_{t_0+1}, \dots, Y_{t-1}, Y_t \mid \text{do}(X_{t_0}, X_{t_0+1}, \dots, X_{t-1}, X_t)).$$
- A micro causal effect is a total effect from a single variable X to another single variable Y , e.g., $\Pr(y_t \mid \text{do}(x_{t-\gamma}))$.

Reminder:

- A macro causal effect is a causal effect from a whole cluster \mathbb{X} to another whole cluster \mathbb{Y} , e.g.,
$$\Pr(Y_{t_0}, Y_{t_0+1}, \dots, Y_{t-1}, Y_t \mid \text{do}(X_{t_0}, X_{t_0+1}, \dots, X_{t-1}, X_t)).$$
- A micro causal effect is a total effect from a single variable X to another single variable Y , e.g., $\Pr(y_t \mid \text{do}(x_{t-\gamma}))$.

Can we identify micro causal effects in C-DMGs over ADMGs?

Reminder:

- A macro causal effect is a causal effect from a whole cluster \mathbb{X} to another whole cluster \mathbb{Y} , e.g.,
$$\Pr(Y_{t_0}, Y_{t_0+1}, \dots, Y_{t-1}, Y_t \mid \text{do}(X_{t_0}, X_{t_0+1}, \dots, X_{t-1}, X_t)).$$
- A micro causal effect is a total effect from a single variable X to another single variable Y , e.g., $\Pr(y_t \mid \text{do}(x_{t-\gamma}))$.

Can we identify micro causal effects in C-DMGs over ADMGs?

In specific cases and/or with prior knowledge, such as time, then **yes!**

Can we identify micro causal effects in C-DMGs over ADMGs?

In specific cases and/or with prior knowledge, such as time, then **yes!**

- Assaad et al., “Identifiability of total effects from abstractions of time series causal graphs”.
- Assaad, “Towards identifiability of micro total effects in summary causal graphs with latent confounding: extension of the front-door criterion”.
- Ferreira and Assaad, “Identifiability of Direct Effects from Summary Causal Graphs”.
- Ferreira and Assaad, “Average Controlled and Average Natural Micro Direct Effects in Summary Causal Graphs”.

3

THE INPUT/OUTPUT SCM FRAMEWORK

DEFINITIONS
CAUSAL TOOLS IN DMGS

3

THE INPUT/OUTPUT SCM FRAMEWORK

DEFINITIONS

CAUSAL TOOLS IN DMGS

i/o SCM

$$\forall x, \xi_x \leftarrow \mathcal{D}_x$$

$$A := f_A(\xi_a, \xi_{ab})$$

$$B := f_B(A, D, E, \xi_b, \xi_{ab})$$

$$C := f_C(B, \xi_c)$$

$$D := f_D(C, \xi_d)$$

$$E := f_E(C, \xi_e)$$

$$(B, C, D) := f_{(B,C,D)}(A, E, \xi_b, \xi_{ab}, \xi_c, \xi_d)$$

$$(B, C, E) := f_{(B,C,E)}(A, D, \xi_b, \xi_{ab}, \xi_c, \xi_e)$$

$$(B, C, D, E) := f_{(B,C,D)}(A, \xi_b, \xi_{ab}, \xi_c, \xi_d, \xi_e)$$

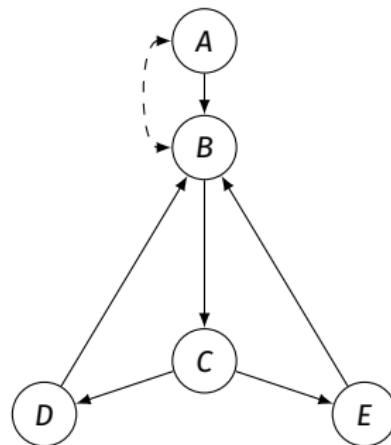
Assumption: Compatibility of the generating processes in cycles.

$$\text{e.g., } (b, c, d) = f_{(B,C,D)}(a, e, \xi_b, \xi_{ab}, \xi_c, \xi_d) \implies b = f_B(a, d, e, \xi_b, \xi_{ab})$$

i/o SCM

$$\begin{aligned} \forall x, \xi_x &\leftarrow \mathcal{D}_x \\ A &:= f_A(\xi_a, \xi_{ab}) \\ B &:= f_B(A, D, E, \xi_b, \xi_{ab}) \\ C &:= f_C(B, \xi_c) \\ D &:= f_D(C, \xi_d) \\ E &:= f_E(C, \xi_e) \\ (B, C, D) &:= f_{(B,C,D)}(A, E, \xi_b, \xi_{ab}, \xi_c, \xi_d) \\ (B, C, E) &:= f_{(B,C,E)}(A, D, \xi_b, \xi_{ab}, \xi_c, \xi_e) \\ (B, C, D, E) &:= f_{(B,C,D)}(A, \xi_b, \xi_{ab}, \xi_c, \xi_d, \xi_e) \end{aligned}$$

Acyclic Directed Mixed Graph (DMG)

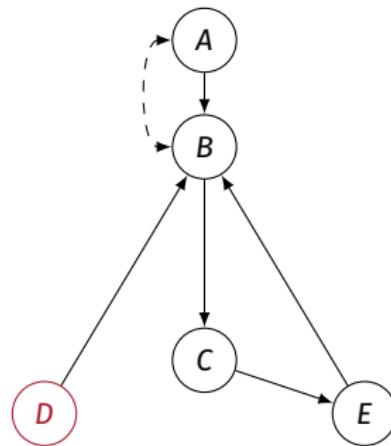


Forré and Mooij, "Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias"

i/o SCM

$$\begin{aligned} \forall x, \quad \xi_x &\leftarrow \mathcal{D}_x \\ A &:= f_A(\xi_a, \xi_{ab}) \\ B &:= f_B(A, D, E, \xi_b, \xi_{ab}) \\ C &:= f_C(B, \xi_c) \\ D &:= d \\ E &:= f_E(C, \xi_e) \\ (B, C, D) &:= f_{(B, C, D)}(A, E, \xi_b, \xi_{ab}, \xi_c, \xi_d) \\ (B, C, E) &:= f_{(B, C, E)}(A, D, \xi_b, \xi_{ab}, \xi_c, \xi_e) \\ (B, C, D, E) &:= f_{(B, C, D)}(A, \xi_b, \xi_{ab}, \xi_c, \xi_d, \xi_e) \end{aligned}$$

Directed Mixed Graph (DMG)



Forré and Mooij, "Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias"

3

THE INPUT/OUTPUT SCM FRAMEWORK

DEFINITIONS

CAUSAL TOOLS IN DMGS

Strongly connected component: $Scc(V, \mathcal{G}) := An(V, \mathcal{G}) \cap De(V, \mathcal{G})$

A walk $\tilde{\pi} = \langle V_1, \dots, V_n \rangle$ is said to be σ -blocked by a set of vertices $Z \subseteq V$ if:

1. $\exists 1 < i < n$ such that $\langle V_{i-1} \xrightarrow{*} V_i \xleftarrow{*} V_{i+1} \rangle \subseteq \tilde{\pi}$ and $V_i \notin Z$, or
2. $\exists 1 < i < n$ such that $\langle V_{i-1} \leftarrow V_i \xleftarrow{*} V_{i+1} \rangle \subseteq \tilde{\pi}$ and $V_i \in Z \setminus Scc(V_{i-1}, \mathcal{G})$, or
3. $\exists 1 < i < n$ such that $\langle V_{i-1} \xrightarrow{*} V_i \rightarrow V_{i+1} \rangle \subseteq \tilde{\pi}$ and $V_i \in Z \setminus Scc(V_{i+1}, \mathcal{G})$, or
4. $\exists 1 < i < n$ such that $\langle V_{i-1} \leftarrow V_i \rightarrow V_{i+1} \rangle \subseteq \tilde{\pi}$ and $V_i \in Z \setminus (Scc(V_{i-1}, \mathcal{G}) \cap Scc(V_{i+1}, \mathcal{G}))$.

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias”. PMLR, 2020.

Strongly connected component: $Scc(V, \mathcal{G}) := An(V, \mathcal{G}) \cap De(V, \mathcal{G})$

A walk $\tilde{\pi} = \langle V_1, \dots, V_n \rangle$ is said to be σ -blocked by a set of vertices $Z \subseteq V$ if:

1. $\exists 1 < i < n$ such that $\langle V_{i-1} \rightarrow V_i \leftarrow V_{i+1} \rangle \subseteq \tilde{\pi}$ and $V_i \notin Z$, or
2. $\exists 1 < i < n$ such that $\langle V_{i-1} \leftarrow V_i \rightarrow V_{i+1} \rangle \subseteq \tilde{\pi}$ and $V_i \in Z \setminus Scc(V_{i-1}, \mathcal{G})$, or
3. $\exists 1 < i < n$ such that $\langle V_{i-1} \rightarrow V_i \rightarrow V_{i+1} \rangle \subseteq \tilde{\pi}$ and $V_i \in Z \setminus Scc(V_{i+1}, \mathcal{G})$, or
4. $\exists 1 < i < n$ such that $\langle V_{i-1} \leftarrow V_i \rightarrow V_{i+1} \rangle \subseteq \tilde{\pi}$ and $V_i \in Z \setminus (Scc(V_{i-1}, \mathcal{G}) \cap Scc(V_{i+1}, \mathcal{G}))$.

X and Y are σ -separated by Z if every walk between X and Y is blocked by Z and we write $(X \perp\!\!\!\perp_{\sigma} Y \mid Z)_{\mathcal{G}}$.

Forré and Mooij, "Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias". PMLR, 2020.

Strongly connected component: $Scc(V, \mathcal{G}) := An(V, \mathcal{G}) \cap De(V, \mathcal{G})$

A walk $\tilde{\pi} = \langle V_1, \dots, V_n \rangle$ is said to be σ -blocked by a set of vertices $\mathbb{Z} \subseteq \mathbb{V}$ if:

1. $\exists 1 < i < n$ such that $\langle V_{i-1} \xrightarrow{*} V_i \xleftarrow{*} V_{i+1} \rangle \subseteq \tilde{\pi}$ and $V_i \notin \mathbb{Z}$, or
2. $\exists 1 < i < n$ such that $\langle V_{i-1} \leftarrow V_i \xleftarrow{*} V_{i+1} \rangle \subseteq \tilde{\pi}$ and $V_i \in \mathbb{Z} \setminus Scc(V_{i-1}, \mathcal{G})$, or
3. $\exists 1 < i < n$ such that $\langle V_{i-1} \xrightarrow{*} V_i \rightarrow V_{i+1} \rangle \subseteq \tilde{\pi}$ and $V_i \in \mathbb{Z} \setminus Scc(V_{i+1}, \mathcal{G})$, or
4. $\exists 1 < i < n$ such that $\langle V_{i-1} \leftarrow V_i \rightarrow V_{i+1} \rangle \subseteq \tilde{\pi}$ and $V_i \in \mathbb{Z} \setminus (Scc(V_{i-1}, \mathcal{G}) \cap Scc(V_{i+1}, \mathcal{G}))$.

\mathbb{X} and \mathbb{Y} are σ -separated by \mathbb{Z} if every walk between \mathbb{X} and \mathbb{Y} is blocked by \mathbb{Z} and we write $(\mathbb{X} \perp\!\!\!\perp_{\sigma} \mathbb{Y} \mid \mathbb{Z})_{\mathcal{G}}$.

Theorem

$$(\mathbb{X} \perp\!\!\!\perp_{\sigma} \mathbb{Y} \mid \mathbb{Z})_{\mathcal{G}} \Rightarrow \mathbb{X} \perp\!\!\!\perp_{Pr} \mathbb{Y} \mid \mathbb{Z}$$

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias”. PMLR, 2020.

The σ -based do-calculus consists of three rules:

Rule 1 $P(y|do(x), z, w) = P(y|do(x), w)$ if $(Y \perp\!\!\!\perp_{\sigma} Z | X, W)_{\mathcal{G}_{\overline{X}}}$

Rule 2 $P(y|do(x, z), w) = P(y|do(x), z, w)$ if $(Y \perp\!\!\!\perp_{\sigma} Z | X, W)_{\mathcal{G}_{\overline{X}\overline{Z}}}$

Rule 3 $P(y|do(x, z), w) = P(y|do(x), w)$ if $(Y \perp\!\!\!\perp_{\sigma} Z | X, W)_{\mathcal{G}_{\overline{X}\overline{Z}(W)}}$

Forré and Mooij, "Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias". PMLR, 2020.

The σ -based do-calculus consists of three rules:

Rule 1 $P(y|do(x), z, w) = P(y|do(x), w)$ if $(Y \perp\!\!\!\perp_{\sigma} Z | X, W)_{G_{\overline{X}}}$

Rule 2 $P(y|do(x, z), w) = P(y|do(x), z, w)$ if $(Y \perp\!\!\!\perp_{\sigma} Z | X, W)_{G_{\overline{X}\overline{Z}}}$

Rule 3 $P(y|do(x, z), w) = P(y|do(x), w)$ if $(Y \perp\!\!\!\perp_{\sigma} Z | X, W)_{G_{\overline{XZ}(W)}}$

Theorem

$P(y | do(x))$ is identifiable if and only if there exists a finite sequence of transformations, each conforming to either one of the Rules 1-3 or some standard probability manipulations, that reduces $P(y | do(x))$ into a do-free formula.

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias”. PMLR, 2020.

The σ -based do-calculus consists of three rules:

Rule 1 $P(y|do(x), z, w) = P(y|do(x), w)$ if $(Y \perp\!\!\!\perp_{\sigma} Z | X, W)_{G_{\overline{X}}}$

Rule 2 $P(y|do(x, z), w) = P(y|do(x), z, w)$ if $(Y \perp\!\!\!\perp_{\sigma} Z | X, W)_{G_{\overline{XZ}}}$

Rule 3 $P(y|do(x, z), w) = P(y|do(x), w)$ if $(Y \perp\!\!\!\perp_{\sigma} Z | X, W)_{G_{\overline{XZ}(W)}}$

Theorem

$P(y | do(x))$ is identifiable if and only if there exists a finite sequence of transformations, each conforming to either one of the Rules 1-3 or some standard probability manipulations, that reduces $P(y | do(x))$ into a do-free formula.

The do-calculus is sound!

Forré and Mooij, “Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias”. PMLR, 2020.

4

CLUSTER DMGs OVER DMGs

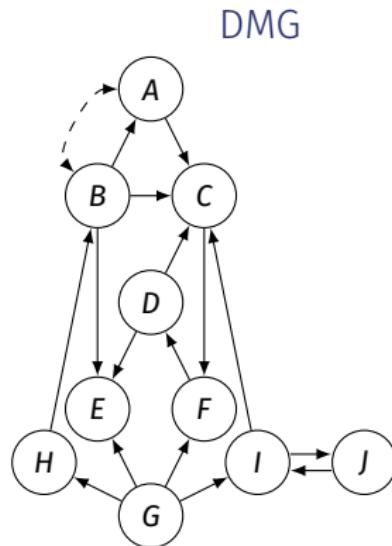
DEFINITIONS
CAUSAL TOOLS

4

CLUSTER DMGs OVER DMGs

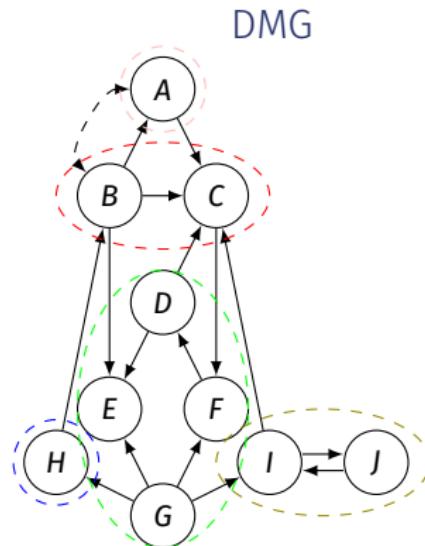
DEFINITIONS

CAUSAL TOOLS



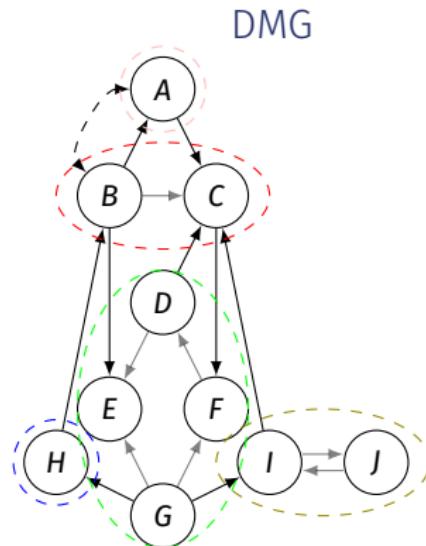
C-DMG over DMGs

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs over DMGs.



C-DMG over DMGs

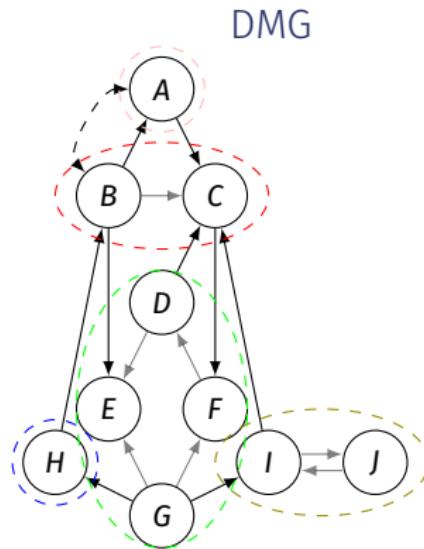
Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs over DMGs.



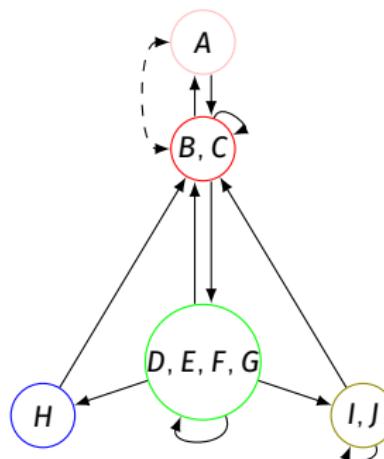
C-DMG over DMGs

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs over DMGs.

CLUSTER DMGs OVER DMGs

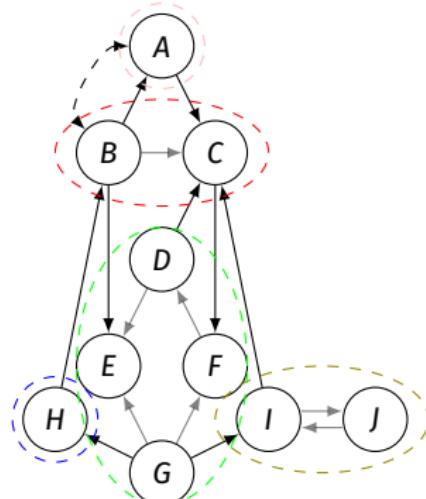


C-DMG over DMGs

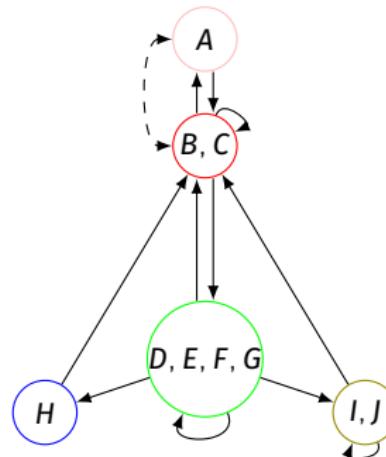


Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs over DMGs.

DMG



C-DMG over DMGs



When clustering, cycles can:

- "disappear" (e.g., $I \rightarrow J \rightarrow I$) and/or
- "remain" (e.g., $C \rightarrow F \rightarrow D \rightarrow C$) and/or
- "appear" (e.g., $A \rightarrow (B, C) \rightarrow A$).

Ferreira and Assaad, Identifying Macro Causal Effects in C-DMGs over DMGs.

4

CLUSTER DMGs OVER DMGs

DEFINITIONS

CAUSAL TOOLS

Is σ -separation applicable for C-DMGs over DMGs?

Is σ -separation applicable for C-DMGs over DMGs?

Yes!

Is σ -separation applicable for C-DMGs over DMGs?

Yes!

Theorem

σ -separation is valid in C-DMGs over DMGs.

- If a σ -separation holds in a given C-DMG, then it holds in every compatible DMG.
- If a σ -separation does not hold in a given C-DMG, then there exists a compatible DMG in which it does not hold.

Is σ -based do-calculus applicable for C-DMGs over DMGs?

Is σ -based do-calculus applicable for C-DMGs over DMGs?
Yes!

Is σ -based do-calculus applicable for C-DMGs over DMGs?
Yes!

Theorem

The Rules 1-3 of the do-calculus are valid in C-DMGs over DMGs.

- If a sequence of rules apply in a given C-DMG, then it applies in every compatible DMG.
- If a sequence of rules of the do-calculus does not apply in a given C-DMG, then there exists a compatible DMG in which it does not apply.

5

CONCLUSION

Use causal graphs !

- Even if the causal graph is not fully specified,
- Even if the causal graph is cyclic.

Now, there exist tools which accomodate these cases.

THANK YOU FOR YOUR ATTENTION!

ANY QUESTIONS?

- Assaad, Charles K. "Towards identifiability of micro total effects in summary causal graphs with latent confounding: extension of the front-door criterion". In: Transactions on Machine Learning Research (2025). ISSN: 2835-8856. URL: <https://openreview.net/forum?id=5f7YlSKG1l>.
- Assaad, Charles K., Emilie Devijver, and Eric Gaussier. "Survey and Evaluation of Causal Discovery Methods for Time Series". In: 73 (May 2022). ISSN: 1076-9757. DOI: [10.1613/jair.1.13428](https://doi.org/10.1613/jair.1.13428). URL: <https://doi.org/10.1613/jair.1.13428>.

- Assaad, Charles K. et al. "Identifiability of total effects from abstractions of time series causal graphs". In: Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence. Ed. by Negar Kiyavash and Joris M. Mooij. Vol. 244. Proceedings of Machine Learning Research. PMLR, July 2024, pp. 173–185.
- Ferreira, Simon and Charles K. Assaad. "Average Controlled and Average Natural Micro Direct Effects in Summary Causal Graphs". In: (2025). Submitted.
- — . "Identifiability of Direct Effects from Summary Causal Graphs". In: Proceedings of the AAAI Conference on Artificial Intelligence 38.18 (Mar. 2024), pp. 20387–20394. DOI: [10.1609/aaai.v38i18.30021](https://doi.org/10.1609/aaai.v38i18.30021).

- Ferreira, Simon and Charles K. Assaad.
Identifying Macro Causal Effects in C-DMGs. 2025. arXiv:
[2504.01551 \[cs.AI\]](https://arxiv.org/abs/2504.01551).
- — . “Identifying macro conditional independencies and macro total effects in summary causal graphs with latent confounding”. In: (2025). Causal Inference for Time Series Data Workshop at the 40th Conference on Uncertainty in Artificial Intelligence.
- Forré, Patrick and Joris M. Mooij. “Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias”. In:
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference
Ed. by Ryan P. Adams and Vibhav Gogate. Vol. 115.
Proceedings of Machine Learning Research. PMLR, 2020,
pp. 71–80.

- Pearl, Judea. "Causal diagrams for empirical research". In: Biometrika 82.4 (Dec. 1995), pp. 669–688. ISSN: 0006-3444. DOI: [10.1093/biomet/82.4.669](https://doi.org/10.1093/biomet/82.4.669).
 - .Causality: Models, Reasoning, and Inference. Cambridge University Press, 2009.
- — .Probabilistic Reasoning in Intelligent Systems: Networks of Pla
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1988. ISBN: 0-934613-73-7.
- Shpitser, Ilya and Judea Pearl. "Complete identification methods for the causal hierarchy". In: Journal of Machine Learning Research 9 (2008). URL: <https://www.jmlr.org/papers/volume9/shpitser08a/shpitser08a.pdf>.