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Preliminary. Flow Generative Models for Statistical Inferences
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* lllustrative Figures comparing Diffusion v.s. Flow

Flow Model (ODE):

da(t) _
o = u(a(t), 1

Op(z,t)+V-(p(z,t)v(z,t)) =0

Diffusion Model (SDE):
dz(t) = —Vu(z(t), t)dt + v2dW,
Otp =V - (ptVv + Vpy)

Main Difference:

Aspect Diffusion Flow

Generative Performance | Excellent Fair
Statistical Inference Poor Excellent

Training Time Poor Good
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Preliminary: Flow Matching for Generative Modeling (wipman etar. (2023))

X, = (1 — )X, + X,

« Continuous Normalizing Flow:

dx(t)
dt

Bupl,t)+V - (pla, t)v(z, 1)) = 0

= v(z(t),t)

Flow Matching: LM = Einrh0,1], ~p(-2) [H’U(CE (t),t) — u(z(t), t)||2]

Conditional Flow Matching: ECFM EtNU[O 1], zo~p(-,0), z1~q(-) |:H ¢7 || ]
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Existing Research on Causal Time Series

 Treatment Effects on Time Series
T =E[Y, | Aioy =] —E[Y: | Aoy = k]

- Methods: conditional time-series forecasting (GPs, classical methods, transformer, etc.)

» Counterfactual Explainability
- Such works focus on Interpretability

e.g., “"What adjustments to a patient’s breathing signal would lead the model to forecast deeper sleep stages?”

- Methods: Optimization-based perturbation

« Causal Discovery @<
od \

- Methods: Optimization over linear model .
\/

- Inferring causal directed acyclic graph (DAG) from observed time series.
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. @f“*
Complimentary to Above Works od \

* Interventional and Counterfactual Forecasting .\./

» Assuming a known causal DAG

» Enabling interventions on individual nodes at arbitrary times, and yielding coherent mterventlonal and
counterfactual forecasts of system-wide trajectories

> Intervention:

o How an adjustment of turbine flow over a given time interval will influence the downstream time
series signals over the causal DAG?

P(Xrjrr[X1r,do(Xz :=71)) T C[K]x{r+1,...,T}

» Counterfactual:

o What would the future have looked like if we had set variable(s) X; to other values during the
forecasting window?

p(XS—El:T|x1:TaXE—I—l:T?dO(XI = 71)) ZcC [K] X {T+17 cee 7T}
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Complimentary to Above Works

 Interventional and Counterfactual Prediction

@(
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Intervention:

Conditional generation over causal DAG,

e.g., p(XS | X1 = T)

Counterfactual;

Int.

CF.
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Conditioned on the observed factual outcome, what would have occurred had we

set the parent variables to different values?

e.g, p( X§F | X5, X, =

Most Common Counterfactual Inference (Static Data):

Assume a structural causal model (SCM): X = f(X,q,U)

1. Abduction: Infer noise U given factual data X, X,,, and learned SCM f*

2. Action: Set the intervened nodes to desired actions, i.e., do(Xpa(i) = y)

3. Prediction: Predict X¢F

= f*(y,U)
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Settings and Goals

« A multivariate time series evolving over a causal DAG

« Nodes {1,.. K} in topologically sorted order

* X = {Xl,t: ---»XK,t} Xpa(i),t = {Xj,t:j € pa(i)}
« Context window: {Xj, ..., X };

» Forecasting window: {X .4, ..., X1} @<

* Observational forecasting: °
p(XT+1:T | xl:T) \
* Intervention Schedule:1 € [K] x {t+ 1, ..., T} ° @

 Interventional Forecasting:
p(X i1.7|%x1:7,do(Xz :=v7)) Z C [K]|x{r+1,...,T}
« Counterfactual Forecasting:
p(XS£1:T|X1:T>XE+1:T7dO(XI =n1z)) IC [K] X {T+1’ » 7T}
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Time-Conditioned Continuous Normalizing Flow

« Hidden State Conditioning:
hz’,t = RNN(COI]C&t{CISi,t, C,,;,t}, hz’,t—l)
His 1 = (Rs—1, Ppags),t—1)

 Neural ODE of the Time-Conditioned CNF;

dCL’t(S)
ds

= v(z(s),s; Hi—1), s€][0,1], te{r+1,7+2,...,T}

* Training Loss (Flow Matching):

1 K T
ﬁcpm(e) =1, T—— K(T — 7_) Z Z ]ESNU[O,l],zNN(O,I)Hv(¢(wi,t7z; 3)7 S Hi,t—l)_88¢(mi,taz;3)||§
1=1 t=7+1
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Time-Conditioned Continuous Normalizing Flow

A. RNN State B. Observational / Interventional C. Counterfactual

hpa(z) t—1""%s H \‘

i1,

A ;'3 Hyyy) B ) 0.(" HCF )
hi ¥ h’il— 0 77777 it—1 O\ lt—l () _______ it—1 n
.. LZ. RNN _*t>1 e Zi,t > L i: ; < > CF

T .I xl-,,_l | | Ci,t—l I. aeie

Figure 1: (A) RNN State Update. (B) Observational/Interventional Forecasting. Forecasts are generated by
decoding from latent z; : ~ N (0, 1), conditioned on H i .t+—1 updated with the last predicted Z; +—1. (C) A
factual observation xft is encoded with its factual state H. ZF . Into zf +, then decoded under the counterfactual
state H _1 toyield & a: I. Factual states H f .1 are updated from observed a:z +—1, while counterfactual states

H _ 1 are updated from the previously generated x?f 1
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Observational/Interventional Forecasting

Algorithm 3: Time Series Observational/In-
terventional Forecasting

1: Input: Context window {z; 1.- } X ;; Algorithm 1: DEC(-, -)
intervention schedule Z with values {~; ; } . ——
o . 3 o 1: Input: Latent input 2; ;; conditioning
2: Initialize hidden states H; , = H; , with hidden state H; ;1
Zi1.r foralle=1,..., K 2: Integrate the ODE backward from s = 1 to

3: fort=7+1toT do s =0with z(1) = 2z; ¢+

4. fori=1,..., K do {topological order} 1

5: if (i,t) € Z then 2(0) « @5 (215 Hi,lt_l)

’? elszeci,t < Vit = Zit _/0 ’U(CB(S), S; Hi,t—l) ds

8: Sample z; ; ~ N(Q, 1) 3 2, « (0)

9: Lf)i,t — DEC(Zi,t, Hi,t—l) {Alg. } 4: Return: Z; ;
10: end if  Empirically, we use Runge—Kutta numerical integration.

update , . ~
11: hits hpagiy,t (B, wpa(z'),t)
12: Hiy <= (hit; hpa(i),t)
13:  end for
14: end for
15: Output: {Z; + }i—1. K. t=r+1...T :
; g ey Georgia
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Counterfactual Forecasting

Algorithm 2: Enc(, -)

Algorithm 4: Counterfactual Time Series Generation 1: Input: Observed factual value ¥
: conditioning factual state H i
1: Input: Context window {z; 1., }{—,; factual sample {} ,,,.-}/*; intervention schedule 7 2: Tntograte the ODE forward fiom nis s
with values {~; .} s = 1 with z(0) = a7 :
1
2: Obtain factual hidden states { H t}t_ from the context {z; ;.- } and observed factual 2(1)  ®(aFy; HE,_,)
{xi,r-f—l:T} r 1 IF d

3: Initialize counterfactual hidden states HFTF = H, . with context {z; 1., } foralli =1,..., K = Tt +/0 v(a(e), & Hyy ) ds

4: fort=.7'-|-1t0Td0 . . 3. zgt(_x(l)

5 fm: i = 1,..., K do {nodes in topological order} 4 Return: 7%,

6: lf ('L t) = I thell  Empirically, v:/e use Runge-Kutta numerical integration.

T Sl; — 71 1

8: else

: . Algorithm 1: DEC(-, -
9: f : « ENc(«},, Hj,_;)  {Algorithm2; Abduction} e ) ——
CF _ L _ o 1: Input: Latent input z; ;; conditioning
10: ¥« DEC(2f it 1) {Algonthm Action-Prediction} hidden state H; ;4
11: end lf 2: Integrate the ODE backward from s = 1 to
update s =0 with z(1) = 2; 4
12: hz b hpa(i) U2 E— (xz b pa(z) t) 1(( | t )
z(0) @5 (2i¢; Hijt—1
1451: :’illffi fOI' = —/0 v(z(s), s; Hit—1) ds
: end for

g

i",:,t — :1:(0)
4: Return: Z; ¢

t Empirically, we use Runge—Kutta numerical integration.
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Interventional & Counterfactual lllustrations

Interventional Forecasting

Counterfactual Forecasting
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Counterfactual Recovery Properties

We assume that the structural causal models (SCM) is given by:
X = f(X<t'Xpa,<tr Ut)

Assumption 5.1.

(Al) Ut AL (X<taXpa,<t)-

(A2) The structural causal equation f(-, U;) is monotone in Uy.

(A3) For the encoded latent variable Z; = ®y(X;; H;_1), the conditional distribution satisfies
po(Zi | Hi—1) = q(Z:) = N(Z4;0,1).

Proposition 5.3 (Encoded as a function of the exogenous noise U;). Let Assumptionhold. Without
loss of generality, suppose the exogenous noise U; ~ Unif|0, 1|. At each time t, the observed variable
is generated by the structural causal model Xy = f(X<t, Xpa,<t,Ut), and that the flow encoder
produces Zy = ®g(Xy; Hi—1). Then there exists a continuously differentiable bijection g : U — Z,
functionally invariant to H;_+, such that,

Zy = ®9(Xy; Hi—1) = Po(f(X<t, Xpa,<t, Ur); Hi—1) = g(U:) a.s. (16)

Corollary 5.5 (Counterfactual recovery). Let Assumption|5.1|hold. Consider a factual sample gener-
ated by the structural causal model X = f (X<t, Xpa,<t,Ut), and let its encoded latent be ZtF —

A

Dy (Xf; HtF_l). At time step t, we apply the intervention do(X<t = X'Sf, Xpa,<t = Xgafq),
yielding the counterfactual hidden state HCY|. Then the decoder recovers the true counterfactual at
time step t almost surely:
-CF ._ &—1(7F. f7CF\ _ yCF
X" =y H ) =X
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Argonne Hydropower System

Transmission Lines

Figure 11: Hydropower system graph over 8 nodes. Exogenous variables U; ; are omitted for clarity
but exist for every node at each time ¢t. Left: Full node-level causal structure between consecutive
time, with all variables {X;4,...,Xs:} present at each step. Right: Rolled-up (time-suppressed) Georaia
view over different nodes {X1,..., Xg}. Each arrow X; — X (with ¢ # j) denotes a lag-1 temporal GI' g
dependency X; ;1 — X that holds for all £. Both panels depict the same underlying structure.
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Hydropower — Interventional Forecasting

Hydropower System — Interventional Forecasting ; Hydl'OpOWCI' SyStem

X1t (Intﬁrvened) 3_0.X2't (Inte;vened) " X3t N Xa t : ObS Int.
— | N il DoFlow | 1.13:15  1.21419
IR 134 N R o W = GRU | 20513 24513
=== | ol |~ TFT ' 182405 21614
L L T Vi TDE | 149+ 2.08.4 40
o ‘:‘—ﬁ I ™ Ziii\/w\ | TSMixer | 1.51495  2.114.3
A N 4 [ R DeepVAR | 17815  2.391 5
CERme I o MQF2 | 19712  2.62434

Table 7: RMSE for observational and interven-
tional time-series forecasting in the hydropower
system.
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Hydropower — Anomaly Detection

Proposition
obtained via the continuous normalizing flow is:

>

4.1

Given base samples z, 1.7 ~ q(-), the log-density of the generated time series

logp&X}+LT jT+1:T|E[7',ZT-+1:T

Hydropower System - Anomaly Detection
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Hydropower System - Anomaly Detection
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Thank you!
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