

Causal Generative Flows for Interventional and Counterfactual Time Series Prediction

Speaker: Dongze Wu

Authors

Dongze Wu

Georgia Tech

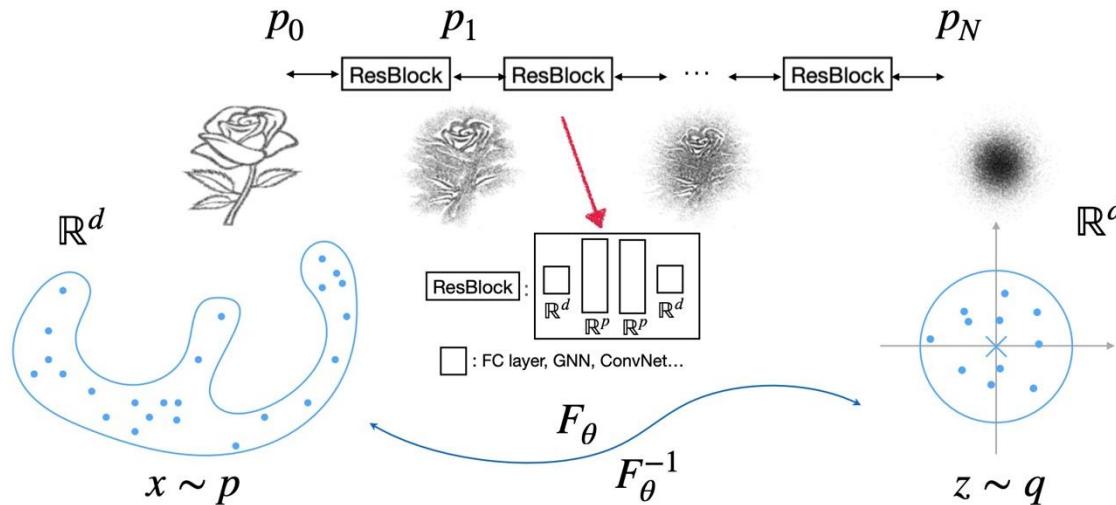
Feng Qiu

Argonne National Lab

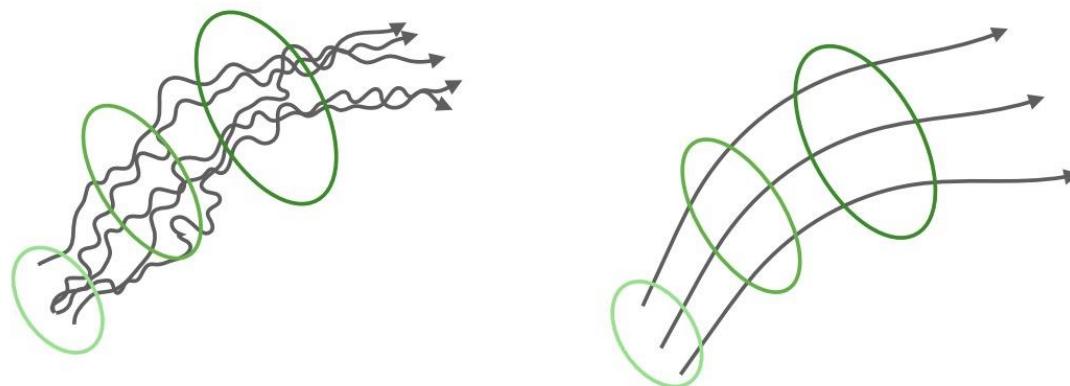
Dr. Yao Xie

Georgia Tech

Preliminary: Flow Generative Models for Statistical Inferences



* Illustrative Figure on Traditional *Flow* Generative Model



* Illustrative Figures comparing *Diffusion* v.s. *Flow*

- Flow Model (ODE):

$$\frac{dx(t)}{dt} = v(x(t), t)$$

$$\partial_t \rho(x, t) + \nabla \cdot (\rho(x, t) v(x, t)) = 0$$

- Diffusion Model (SDE):

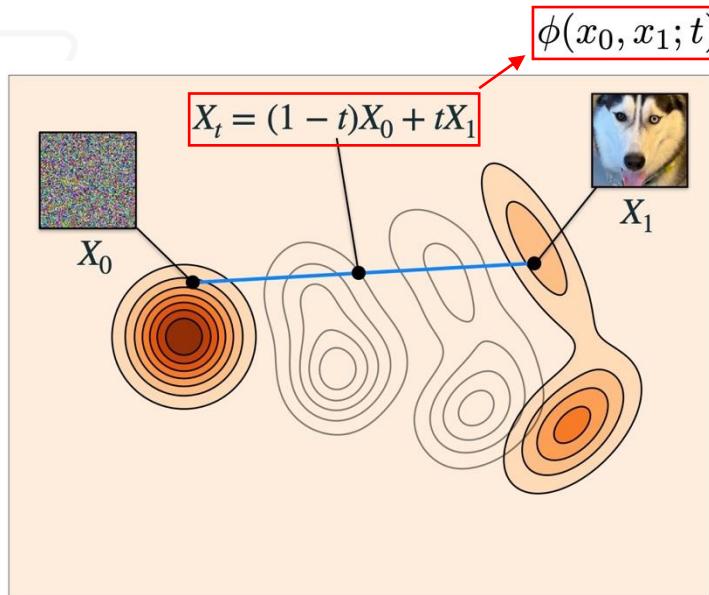
$$dx(t) = -\nabla v(x(t), t) dt + \sqrt{2} dW_t$$

$$\partial_t \rho = \nabla \cdot (\rho_t \nabla v + \nabla \rho_t)$$

- Main Difference:

Aspect	Diffusion	Flow
Generative Performance	Excellent	Fair
Statistical Inference	Poor	Excellent
Training Time	Poor	Good

Preliminary: Flow Matching for Generative Modeling (Lipman et al. (2023))



- **Continuous Normalizing Flow:**

$$\frac{dx(t)}{dt} = v(x(t), t)$$

$$\partial_t \rho(x, t) + \nabla \cdot (\rho(x, t) v(x, t)) = 0$$

Flow Matching:

$$\mathcal{L}_{\text{FM}} = \mathbb{E}_{t \sim \mathcal{U}[0,1], x \sim p(\cdot, t)} \left[\|v(x(t), t) - u(x(t), t)\|^2 \right]$$

Conditional Flow Matching:

$$\mathcal{L}_{\text{CFM}} = \mathbb{E}_{t \sim \mathcal{U}[0,1], x_0 \sim p(\cdot, 0), x_1 \sim q(\cdot)} \left[\left\| v(\phi, t) - \frac{d\phi}{dt} \right\|^2 \right]$$

Existing Research on Causal Time Series

- Treatment Effects on Time Series

$$\tau_t = E[Y_t | A_{t-1} = j] - E[Y_t | A_{t-1} = k]$$

- Methods: conditional time-series forecasting (GPs, classical methods, transformer, etc.)

- Counterfactual Explainability

- Such works focus on *Interpretability*

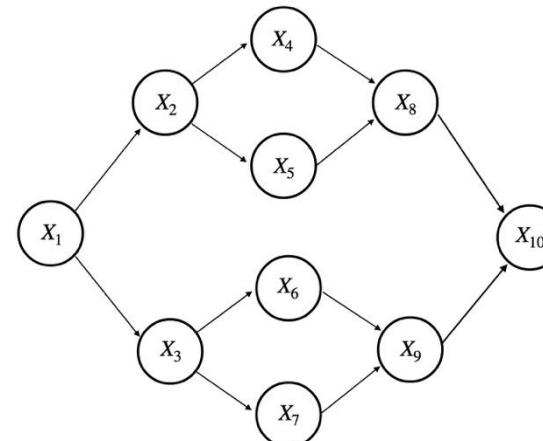
- e.g., "What adjustments to a patient's breathing signal would lead the model to forecast deeper sleep stages?"

- Methods: Optimization-based perturbation

- Causal Discovery

- Inferring causal directed acyclic graph (DAG) from observed time series.

- Methods: Optimization over linear model



Complimentary to Above Works

- Interventional and Counterfactual Forecasting

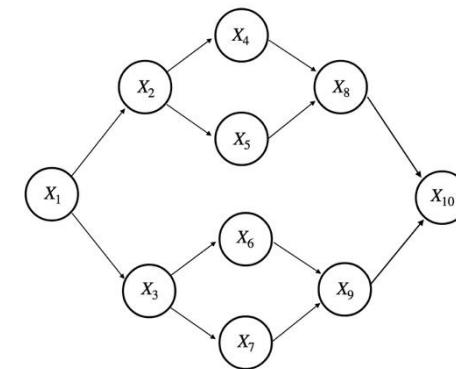
- Assuming a known causal DAG
- Enabling interventions on individual nodes at arbitrary times, and yielding coherent interventional and counterfactual forecasts of system-wide trajectories
- Intervention:
 - How an adjustment of turbine flow over a given time interval will influence the downstream time series signals over the causal DAG?

$$p(\mathbf{X}_{\tau+1:T} | \mathbf{x}_{1:\tau}, \text{do}(X_{\mathcal{I}} := \gamma_{\mathcal{I}})) \quad \mathcal{I} \subseteq [K] \times \{\tau+1, \dots, T\}$$

- Counterfactual:

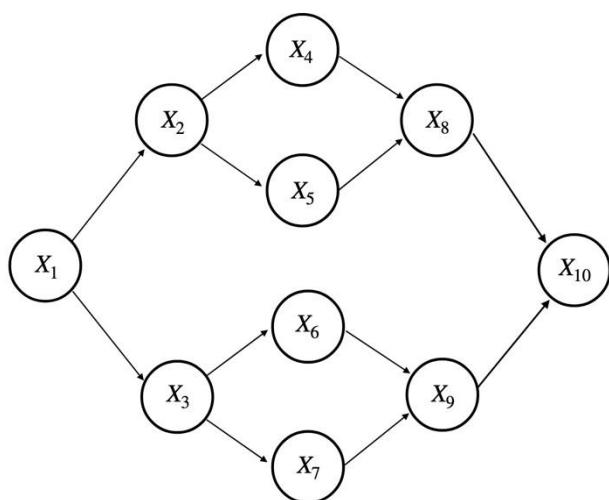
- What would the future have looked like if we had set variable(s) X_I to other values during the forecasting window?

$$p(\mathbf{X}_{\tau+1:T}^{\text{CF}} | \mathbf{x}_{1:\tau}, \mathbf{x}_{\tau+1:T}^{\text{F}}, \text{do}(X_{\mathcal{I}} := \gamma_{\mathcal{I}})) \quad \mathcal{I} \subseteq [K] \times \{\tau+1, \dots, T\}$$



Complimentary to Above Works

- Interventional and Counterfactual Prediction



Intervention:

Conditional generation over causal DAG,
e.g., $p(X_8 | X_1 = \tau)$

Counterfactual:

Conditioned on the observed factual outcome, what would have occurred had we set the parent variables to different values?

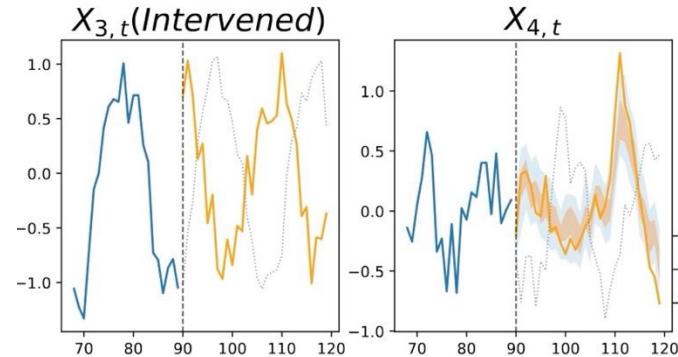
e.g., $p(X_8^{CF} | X_8^F, X_1 = \tau)$

Most Common Counterfactual Inference (Static Data):

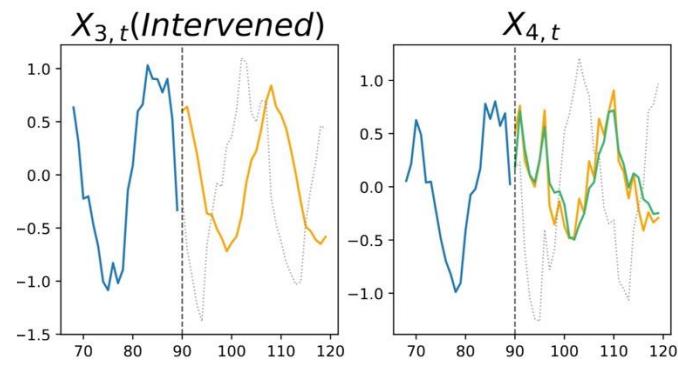
Assume a structural causal model (SCM): $X = f(X_{pa}, U)$

1. Abduction: Infer noise U given factual data X, X_{pa} and learned SCM f^*
2. Action: Set the intervened nodes to desired actions, i.e., $do(X_{pa(i)} = \gamma)$
3. Prediction: Predict $X^{CF} = f^*(\gamma, U)$

Int.

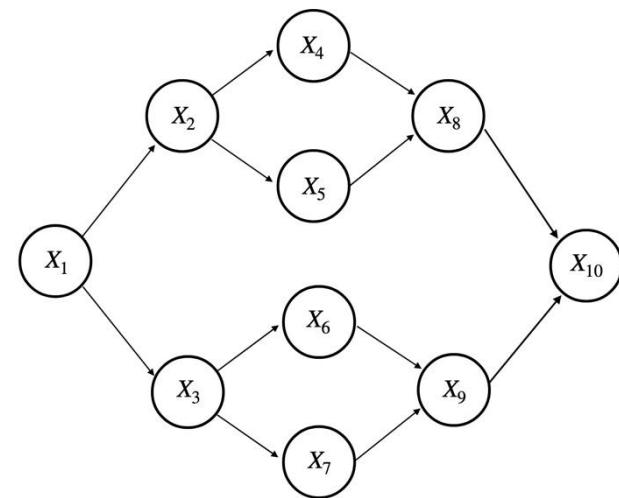


CF.



Settings and Goals

- A multivariate time series evolving over a causal DAG
- Nodes $\{1, \dots, K\}$ in topologically sorted order
- $\mathbf{X}_t = \{X_{1,t}, \dots, X_{K,t}\} \quad X_{pa(i),t} = \{X_{j,t} : j \in pa(i)\}$
- Context window: $\{\mathbf{X}_1, \dots, \mathbf{X}_\tau\}$;
- Forecasting window: $\{\mathbf{X}_{\tau+1}, \dots, \mathbf{X}_T\}$
- Observational forecasting:
$$p(\mathbf{X}_{\tau+1:T} \mid \mathbf{x}_{1:\tau})$$
- Intervention Schedule: $I \subseteq [K] \times \{\tau + 1, \dots, T\}$
- Interventional Forecasting:
$$p(\mathbf{X}_{\tau+1:T} \mid \mathbf{x}_{1:\tau}, \text{do}(X_I := \gamma_I)) \quad I \subseteq [K] \times \{\tau + 1, \dots, T\}$$
- Counterfactual Forecasting:
$$p(\mathbf{X}_{\tau+1:T}^{\text{CF}} \mid \mathbf{x}_{1:\tau}, \mathbf{x}_{\tau+1:T}^{\text{F}}, \text{do}(X_I := \gamma_I)) \quad I \subseteq [K] \times \{\tau + 1, \dots, T\}$$



Time-Conditioned Continuous Normalizing Flow

- Hidden State Conditioning:

$$h_{i,t} = \text{RNN}(\text{concat}\{x_{i,t}, c_{i,t}\}, h_{i,t-1})$$

$$H_{i,t-1} := (h_{i,t-1}, h_{\text{pa}(i),t-1})$$

- Neural ODE of the Time-Conditioned CNF:

$$\frac{dx_t(s)}{ds} = v(x_t(s), s; H_{t-1}), \quad s \in [0, 1], \quad t \in \{\tau + 1, \tau + 2, \dots, T\}$$

- Training Loss (Flow Matching):

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{\mathbf{X}_{1:T} \sim p_{\mathcal{X}}} \left[\frac{1}{K(T-\tau)} \sum_{i=1}^K \sum_{t=\tau+1}^T \mathbb{E}_{s \sim \mathcal{U}[0,1], z \sim \mathcal{N}(0,I)} \|v(\phi(x_{i,t}, z; s), s; H_{i,t-1}) - \partial_s \phi(x_{i,t}, z; s)\|_2^2 \right]$$

Time-Conditioned Continuous Normalizing Flow

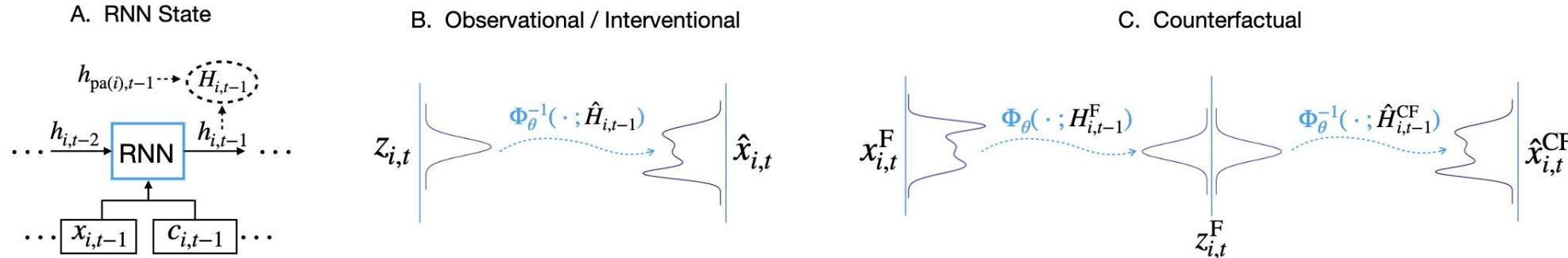


Figure 1: **(A)** RNN State Update. **(B)** Observational/Interventional Forecasting. Forecasts are generated by decoding from latent $z_{i,t} \sim N(0, 1)$, conditioned on $\hat{H}_{i,t-1}$ updated with the last predicted $\hat{x}_{i,t-1}$. **(C)** A factual observation $x_{i,t}^F$ is encoded with its factual state $H_{i,t}^F$ into $z_{i,t}^F$, then decoded under the counterfactual state $\hat{H}_{i,t-1}^{CF}$ to yield $\hat{x}_{i,t}^{CF}$. Factual states $H_{i,t-1}^F$ are updated from observed $x_{i,t-1}^F$, while counterfactual states $\hat{H}_{i,t-1}^{CF}$ are updated from the previously generated $\hat{x}_{i,t-1}^{CF}$.

Observational/Interventional Forecasting

Algorithm 3: Time Series Observational/Interventional Forecasting

```
1: Input: Context window  $\{x_{i,1:\tau}\}_{i=1}^K$ ;  
   intervention schedule  $\mathcal{I}$  with values  $\{\gamma_{i,t}\}$   
2: Initialize hidden states  $\hat{H}_{i,\tau} = H_{i,\tau}$  with  
    $x_{i,1:\tau}$  for all  $i = 1, \dots, K$   
3: for  $t = \tau + 1$  to  $T$  do  
4:   for  $i = 1, \dots, K$  do {topological order}  
5:     if  $(i, t) \in \mathcal{I}$  then  
6:        $\hat{x}_{i,t} \leftarrow \gamma_{i,t}$   
7:     else  
8:       Sample  $z_{i,t} \sim \mathcal{N}(0, 1)$   
9:        $\hat{x}_{i,t} \leftarrow \text{DEC}(z_{i,t}, \hat{H}_{i,t-1})$  {Alg. 1}  
10:    end if  
11:     $h_{i,t}, h_{\text{pa}(i),t} \xleftarrow{\text{update}} (\hat{x}_{i,t}, \hat{x}_{\text{pa}(i),t})$   
12:     $\hat{H}_{i,t} \leftarrow (h_{i,t}, h_{\text{pa}(i),t})$   
13:  end for  
14: end for  
15: Output:  $\{\hat{x}_{i,t}\}_{i=1..K, t=\tau+1..T}$ 
```

Algorithm 1: DEC(\cdot, \cdot)

```
1: Input: Latent input  $z_{i,t}$ ; conditioning  
   hidden state  $H_{i,t-1}$   
2: Integrate the ODE backward from  $s = 1$  to  
    $s = 0$  with  $x(1) = z_{i,t}$ :  

$$x(0) \leftarrow \Phi_{\theta}^{-1}(z_{i,t}; H_{i,t-1})$$

$$= z_{i,t} - \int_0^1 v(x(s), s; H_{i,t-1}) ds$$
  
3:  $\hat{x}_{i,t} \leftarrow x(0)$   
4: Return:  $\hat{x}_{i,t}$ 
```

[†] Empirically, we use Runge–Kutta numerical integration.

Counterfactual Forecasting

Algorithm 4: Counterfactual Time Series Generation

```

1: Input: Context window  $\{x_{i,1:\tau}\}_{i=1}^K$ ; factual sample  $\{x_{i,\tau+1:T}^F\}_{i=1}^K$ ; intervention schedule  $\mathcal{I}$  with values  $\{\gamma_{i,t}\}$ 
2: Obtain factual hidden states  $\{H_{i,t}^F\}_{t=\tau}^{T-1}$  from the context  $\{x_{i,1:\tau}\}$  and observed factual  $\{x_{i,\tau+1:T}^F\}$ 
3: Initialize counterfactual hidden states  $\hat{H}_{i,\tau}^{\text{CF}} = H_{i,\tau}$  with context  $\{x_{i,1:\tau}\}$  for all  $i = 1, \dots, K$ 
4: for  $t = \tau + 1$  to  $T$  do
5:   for  $i = 1, \dots, K$  do {nodes in topological order}
6:     if  $(i, t) \in \mathcal{I}$  then
7:        $\hat{x}_{i,t}^{\text{CF}} \leftarrow \gamma_{i,t}$ 
8:     else
9:        $z_{i,t}^F \leftarrow \text{ENC}(x_{i,t}^F, H_{i,t-1}^F)$  {Algorithm 2; Abduction}
10:       $\hat{x}_{i,t}^{\text{CF}} \leftarrow \text{DEC}(z_{i,t}^F, \hat{H}_{i,t-1}^{\text{CF}})$  {Algorithm 1; Action-Prediction}
11:    end if
12:     $h_{i,t}, h_{\text{pa}(i),t} \xleftarrow{\text{update}} (\hat{x}_{i,t}^{\text{CF}}, \hat{x}_{\text{pa}(i),t}^{\text{CF}})$ 
13:     $\hat{H}_{i,t}^{\text{CF}} \leftarrow (h_{i,t}, h_{\text{pa}(i),t})$ 
14:  end for
15: end for
16: Output:  $\{\hat{x}_{i,t}^{\text{CF}}\}_{i=1..K, t=\tau+1..T}$ 

```

Algorithm 2: $\text{ENC}(\cdot, \cdot)$

1: **Input:** Observed factual value $x_{i,t}^F$; conditioning factual state $H_{i,t-1}^F$

2: Integrate the ODE forward from $s = 0$ to $s = 1$ with $x(0) = x_{i,t}^F$:

$$x(1) \leftarrow \Phi_\theta(x_{i,t}^F; H_{i,t-1}^F)$$

$$= x_{i,t}^F + \int_0^1 v(x(s), s; H_{i,t-1}^F) ds$$

3: $z_{i,t}^F \leftarrow x(1)$

4: **Return:** $z_{i,t}^F$

† Empirically, we use Runge–Kutta numerical integration.

Algorithm 1: $\text{DEC}(\cdot, \cdot)$

1: **Input:** Latent input $z_{i,t}$; conditioning hidden state $H_{i,t-1}$

2: Integrate the ODE backward from $s = 1$ to $s = 0$ with $x(1) = z_{i,t}$:

$$x(0) \leftarrow \Phi_\theta^{-1}(z_{i,t}; H_{i,t-1})$$

$$= z_{i,t} - \int_0^1 v(x(s), s; H_{i,t-1}) ds$$

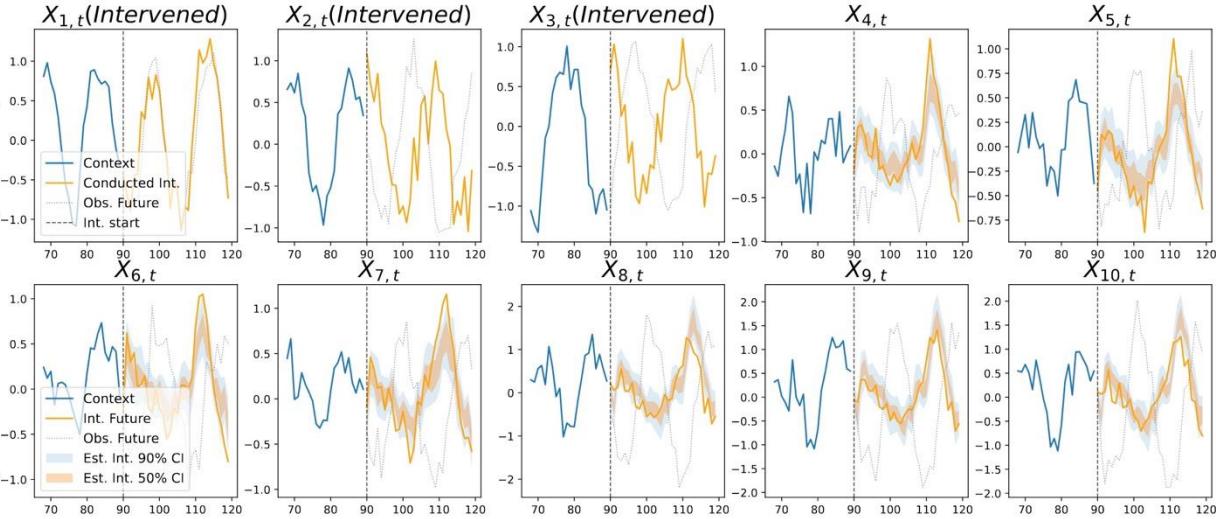
3: $\hat{x}_{i,t} \leftarrow x(0)$

4: **Return:** $\hat{x}_{i,t}$

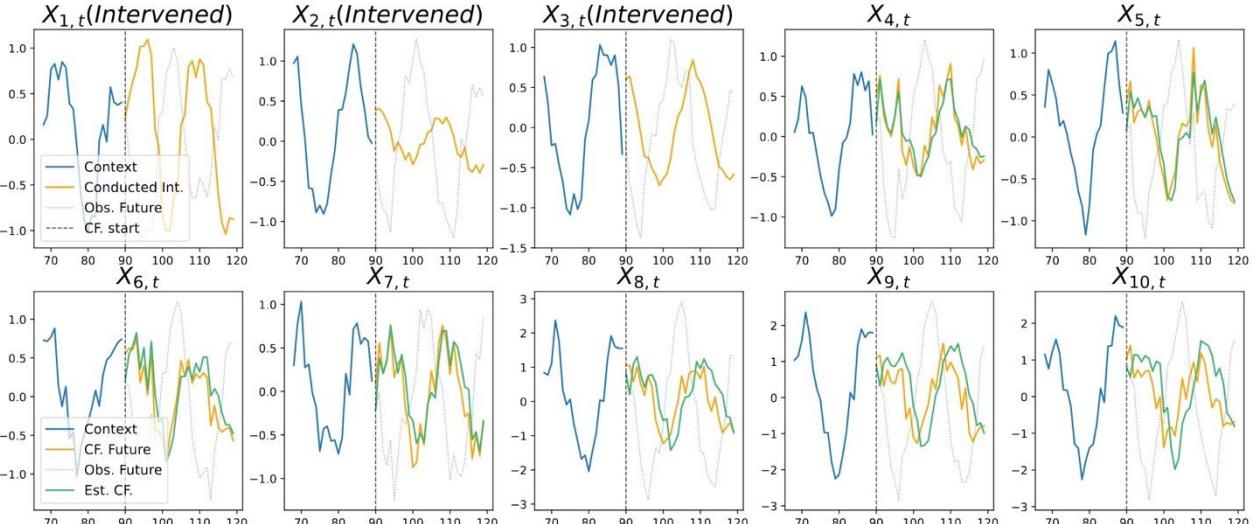
† Empirically, we use Runge–Kutta numerical integration.

Interventional & Counterfactual Illustrations

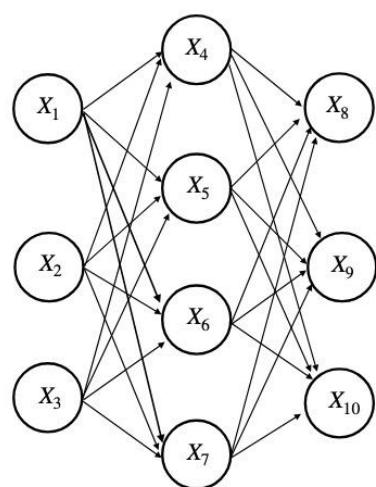
Interventional Forecasting



Counterfactual Forecasting



$$p(\mathbf{X}_{\tau+1:T} | \mathbf{x}_{1:\tau}, \text{do}(X_{\mathcal{I}} := \gamma_{\mathcal{I}}))$$



$$p(\mathbf{X}_{\tau+1:T}^{\text{CF}} | \mathbf{x}_{1:\tau}, \mathbf{x}_{\tau+1:T}^{\text{F}}, \text{do}(X_{\mathcal{I}} := \gamma_{\mathcal{I}}))$$

Counterfactual Recovery Properties

We assume that the structural causal models (SCM) is given by:

$$X_t := f(X_{<t}, X_{\text{pa}, <t}, U_t)$$

Assumption 5.1.

- (A1) $U_t \perp\!\!\!\perp (X_{<t}, X_{\text{pa}, <t})$.
- (A2) The structural causal equation $f(\cdot, U_t)$ is monotone in U_t .
- (A3) For the encoded latent variable $Z_t = \Phi_\theta(X_t; H_{t-1})$, the conditional distribution satisfies $p_\theta(Z_t | H_{t-1}) = q(Z_t) = N(Z_t; 0, 1)$.

Proposition 5.3 (Encoded as a function of the exogenous noise U_t). *Let Assumption 5.1 hold. Without loss of generality, suppose the exogenous noise $U_t \sim \text{Unif}[0, 1]$. At each time t , the observed variable is generated by the structural causal model $X_t = f(X_{<t}, X_{\text{pa}, <t}, U_t)$, and that the flow encoder produces $Z_t = \Phi_\theta(X_t; H_{t-1})$. Then there exists a continuously differentiable bijection $g : \mathcal{U} \rightarrow \mathcal{Z}$, functionally invariant to H_{t-1} , such that,*

$$Z_t = \Phi_\theta(X_t; H_{t-1}) = \Phi_\theta(f(X_{<t}, X_{\text{pa}, <t}, U_t); H_{t-1}) = g(U_t) \quad a.s. \quad (16)$$

Corollary 5.5 (Counterfactual recovery). *Let Assumption 5.1 hold. Consider a factual sample generated by the structural causal model $X_t^F = f(X_{<t}, X_{\text{pa}, <t}, U_t)$, and let its encoded latent be $Z_t^F := \Phi_\theta(X_t^F; H_{t-1}^F)$. At time step t , we apply the intervention $\text{do}(X_{<t} = \hat{X}_{<t}^{\text{CF}}, X_{\text{pa}, <t} = \hat{X}_{\text{pa}, <t}^{\text{CF}})$, yielding the counterfactual hidden state $\hat{H}_{t-1}^{\text{CF}}$. Then the decoder recovers the true counterfactual at time step t almost surely:*

$$\hat{X}_t^{\text{CF}} := \Phi_\theta^{-1}(Z_t^F; \hat{H}_{t-1}^{\text{CF}}) = X_t^{\text{CF}}.$$

Argonne Hydropower System

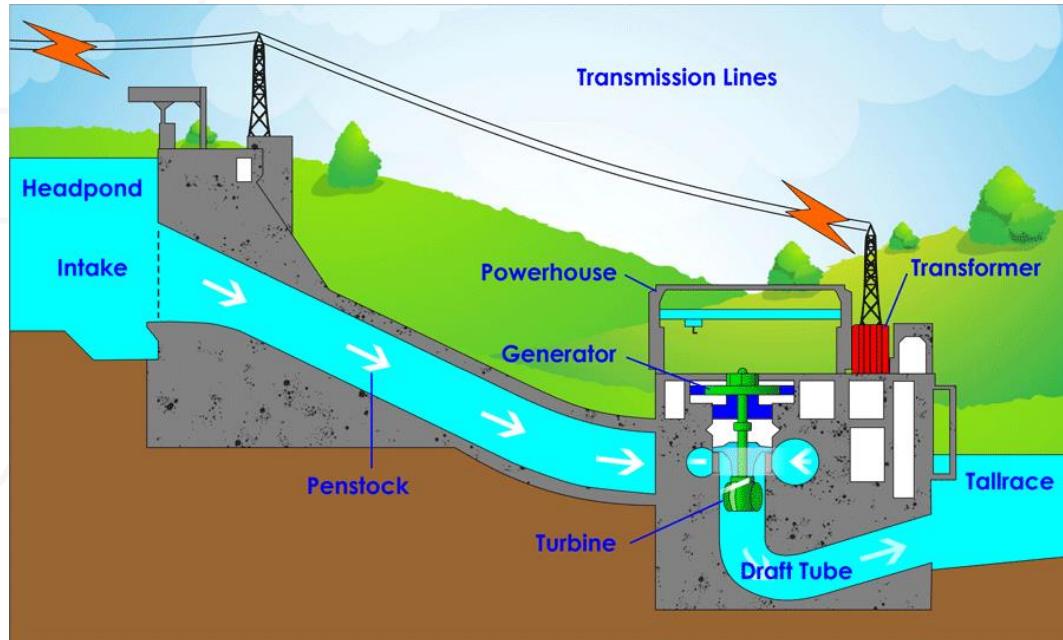
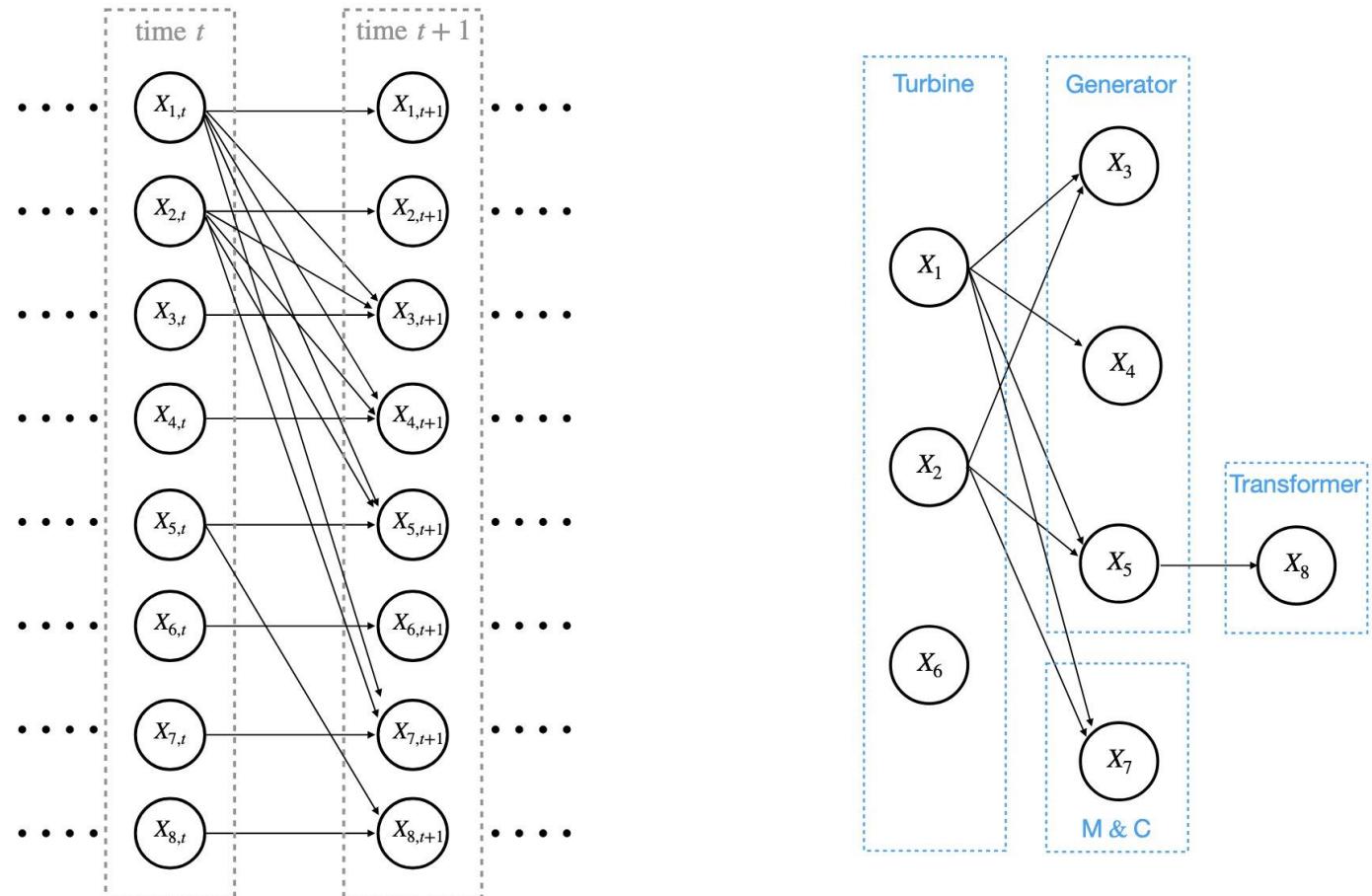
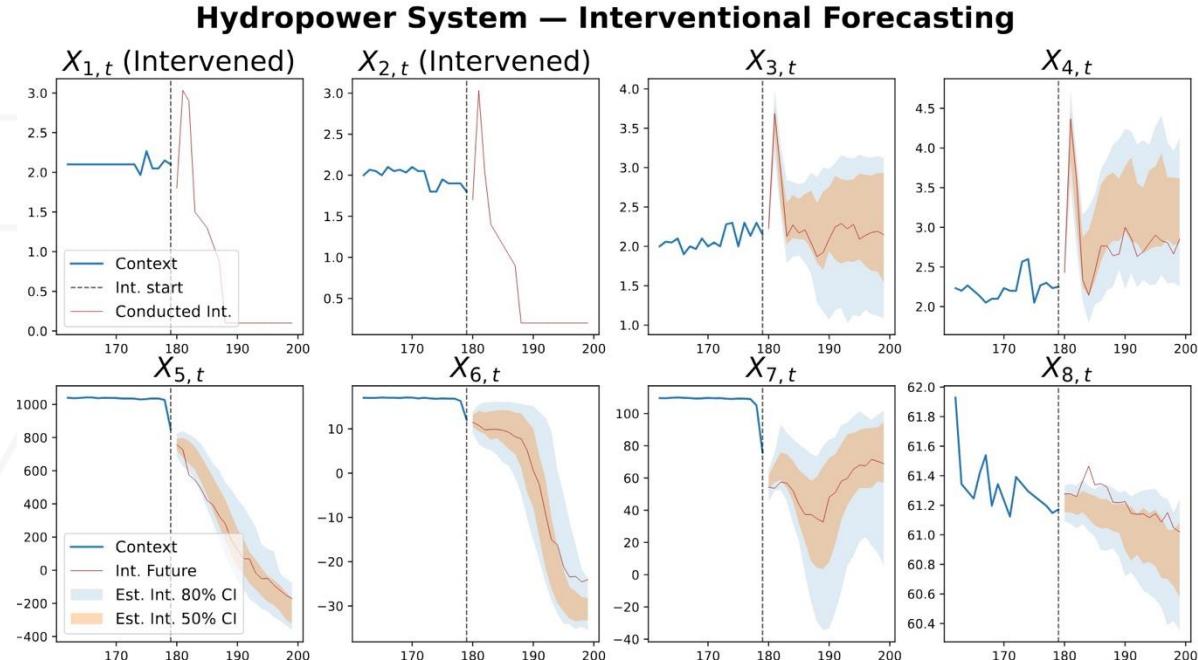


Figure 11: **Hydropower** system graph over 8 nodes. Exogenous variables $U_{i,t}$ are omitted for clarity but exist for every node at each time t . **Left:** Full node-level causal structure between consecutive time, with all variables $\{X_{1,t}, \dots, X_{8,t}\}$ present at each step. **Right:** Rolled-up (time-suppressed) view over different nodes $\{X_1, \dots, X_8\}$. Each arrow $X_i \rightarrow X_j$ (with $i \neq j$) denotes a lag-1 temporal dependency $X_{i,t-1} \rightarrow X_{j,t}$ that holds for all t . Both panels depict the same underlying structure.

Hydropower – Interventional Forecasting



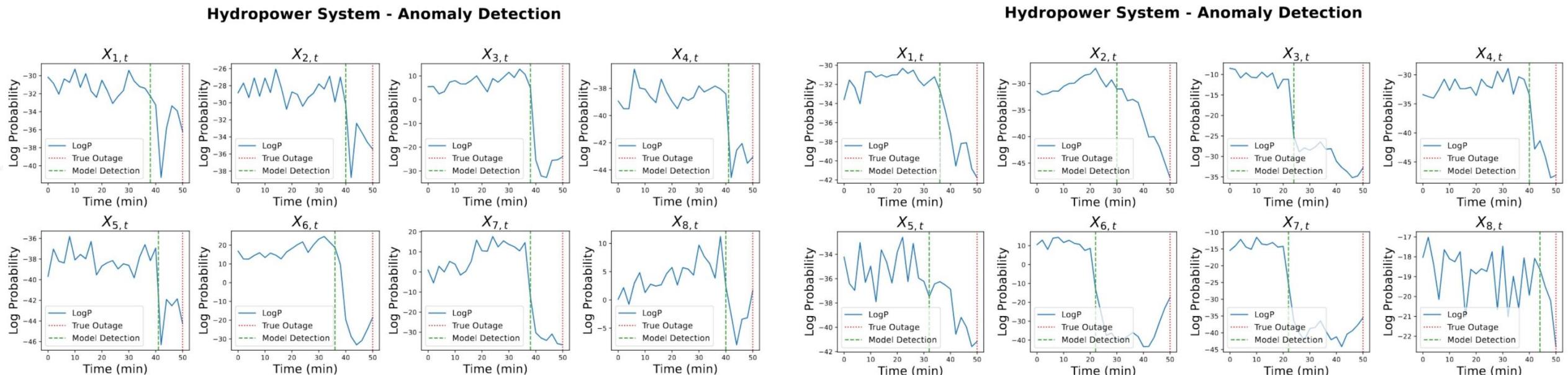
	Hydropower System	
	Obs.	Int.
DoFlow	$1.13 \pm .18$	$1.21 \pm .19$
GRU	$2.05 \pm .32$	$2.45 \pm .35$
TFT	$1.82 \pm .25$	$2.16 \pm .41$
TiDE	$1.49 \pm .24$	$2.08 \pm .40$
TSMixer	$1.51 \pm .25$	$2.11 \pm .32$
DeepVAR	$1.78 \pm .26$	$2.39 \pm .28$
MQF2	$1.97 \pm .24$	$2.62 \pm .34$

Table 7: RMSE for observational and interventional time-series forecasting in the hydropower system.

Hydropower – Anomaly Detection

Proposition 4.1 Given base samples $z_{\tau+1:T} \sim q(\cdot)$, the log-density of the generated time series obtained via the continuous normalizing flow is:

$$\log p_{\theta, X_{\tau+1:T}}(\hat{x}_{\tau+1:T} \mid \hat{H}_{\tau}, z_{\tau+1:T}) = \sum_{t=\tau+1}^T \left[\log q(z_t) + \int_0^1 \nabla \cdot v_{\theta}(x_t(s), s; \hat{H}_{t-1}) ds \right].$$



Thank you!