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Causal inference in observational settings with bipartite interference

m Causal inference provides the framework for studying the effect of an
intervention on a population of interest

m Randomization is considered the gold standard for drawing causal
inferences
~r It can be unethical or impractical to implement
~ Need to develop methodologies for observational data

m Methods can suffer due to units’ causal interconnectedness
~ Interference: a unit's potential outcomes depend on their own
treatment, but also on the treatment of others
~ Complicates how causal effects are defined and estimated



Causal inference in observational settings with bipartite interference

m In bipartite causal inference there are two distinct groups of units:
m interventional units which are assigned treatment / control, and

m outcome units on which we measure the outcome

m Units are connected through a bipartite network
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Bipartite interference network with 3 interventional units
and 8 outcome units.
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Existing literature

m Most work on causal inference assumes no interference

m Causal inference with interference is most often cross-sectional and
considers a fixed and known network
~ Bipartite interference: e.g., Zigler and Papadogeorgou (2021); Harshaw et al.
(2023); Pouget-Abadie et al. (2019)

m Some recent work studies uncertainty of the unknown network in a
cross-sectional study
~ Wikle and Zigler (2023)

m Causal inference with panel data generally assumes no interference
~ Exceptions: e.g., Grossi et al. (2020); Menchetti and Bojinov (2020)



Our motivating context
The effect of wildfire smoke on transportation by bicycle

m The units correspond to geographical areas
m Interventional units are forested areas where a wildfire might take place

m Outcome units are urban areas where bicycle usage is measured

m The outcome units experience smoke from wildfires originating from
interventional units according to a random network driven by
geographic, atmospheric and weather conditions

m What is the effect of smoke from wildfires on total bikeshare time?



Our motivating context

The effect of wildfire smoke on transportation by bicycle

Bay Area Bikeshare Locations Bay Area Exposure Mapping

m Three outcome units in SF Bay area (SF, East Bay, San Jose)

~ Qutcome: Total riding time using Lyft's bikeshare program

m NOAA's Hazard Mapping System combines information on wildfires
and smoke transport to deduct smoke exposure



Notation

m Time: t€{1,2,---,T}. Smooth temporal trend: f(t)
m Interventional units N = {ny,ng,---,ny}.
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Notation

m Time: t€{1,2,---,T}. Smooth temporal trend: f(t)

m Interventional units N = {ny,ng,---,ny}.

;i - Treatment Ay; - presence/absence of wildfire
() « Time-invariant covariates X - e.g. type of vegetation
- Time-varying covariates X; + e.g. humidity

m Outcome units M = {my,ma,---,mps}.
m; - Outcome Y;;
@) - Time-invariant covariates W . e.g. demographic information

- Time-varying covariates Wy; - e.g. temperature

m Network
“Guie{01}: n 2 m; - based on e.g. wind patterns
- Interaction time-invariant covariates - e.g. relative distance of areas
- Interaction time-varying covariates - e.g. traffic in given day



Estimands

m Potential outcomes: Y;;(a, gt ;)

m Assumption (Exposure mapping) There exists function hyj: AxG; - &
for which if hyj(ar, gt.5) = hij(ai, g; ;). then Yij(at, gi.j) = Yij(ai, g; ;)

~ Potential outcomes can be denoted as Yy;(et;)

m The estimand is specific to each outcome unit:

ST 3 06 Vi) 1 =

~ Advantages over estimands that average over units (we will return to
this later)

:Fj(e? 6,) =



Unconfoundedness

m Assumption
m Unconfoundedness of the interventional units’ treatment assignment

At A yt_]() | f(t)3X*7Xt.7W*7Wtj7P*7-lDt.j.
m Unconfoundedness of the bipartite network

Gt-j 4 yt]() | f(t)3X*7Xt.7W*thjvp*vpt.j.



Unconfoundedness

m Assumption
m Unconfoundedness of the interventional units’ treatment assignment

At 1L ytj(') | f(t)aX*)Xf/-vW*7Wtj7P*7Pt.j.
m Unconfoundedness of the bipartite network

Gt-j 4 ytj(') | f(t)’X*»Xt.vW*thij*7Pt.j.

Proposition 1

An outcome unit's exposure assignment is conditionally independent of
potential outcomes

Ey L Yy ()| f(1), X", Xy ,W* Wy, P*, Py .




Unconfoundedness

m Essentially all causal inference with interference that uses exposure
mappings assumes exposure unconfoundedness
m This formalization of exposure unconfoundedness
m acknowledges the bipartite context
m places assumptions on the processes that give rise to a unit's exposure
m provides practical insights for identifying confounders

m renders confounding adjustment more tangible and actionable in the
bipartite setting



Estimation based on matching time periods

Focusing on binary exposures

m One estimand for each outcome unit that averages across time

m Estimation under the exposure unconfoundedness
Etj 1 ytj(') | ]L(f)a X*7 th W*7 W/./7 P*a Pt~.7~

m Time-invariant covariates are implicitly “matched” across time
~ Nothing to do for potentially high-dimensional X* W* P~*



Estimation based on matching time periods

Focusing on binary exposures

m Estimation under the exposure unconfoundedness

Etj 1 ytj() | f(f)a 7Xt‘7 7W/,/'7 >Pt.j.
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Estimation based on matching time periods

Focusing on binary exposures

m Estimation under the exposure unconfoundedness
By L V()| (1), ©, Xy ,2W*, W, P*, P, ;

m We propose matching algorithms that match time periods for one
outcome unit, as follows

balance on W,, X,, P,

< )
ee0eCje®e0j®e®®C0

\
7

time © Exposed
@ Unexposed



The matching algorithms

m Maximize number of matched exposed time periods

m Satisfy balance constraints on
~ time to control temporal trends [()
~ time-varying covariates of the outcome unit W,
~ summaries of time-varying covariates of interventional units X;
~» summaries of interaction covariates P,

m Match an exposed time periods to 1, 2 or (1 or 2) unexposed time
periods

Connections with matching and balancing methods in the literature (e.g.,
Zubizarreta, 2012; Keele et al., 2014; Hainmueller, 2012)



Matching example: Matching 1-1 approach

@A) max ) _as,e,,
(A1) > ani, <1, V€T, and Y ays, <1, Vt, €T,
t. t_
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The matching estimator

m For exposed time period t matched to the unexposed t’, impute its
missing potential outcome as

Yi(0) = Yy
m Estimate the causal effect on the exposed using

1
:&HE=D;(
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Y, - Yi(0)) I(Eyj = 1)



The matching estimator

The estimator’s bias is bounded, and can be made arbitrarily small

Suppose

Yi(e) = 0+Be+ho(t)+ £ hs(Wis)+ 2 My (Kis)+ X By pc s (Pos) +ea(e),
with E(et(e)|-) = 0 and functions ho, hi, ..., hpy +py+pp that are K-times
differentiable with |hgk)(a:)| <c¢, then

|E(f'—7’)| < CT5+CWXP5,+CTWXPKK_1,

where Cr,Cwxp and Cpw x p are constants and 6,0',1 are controlled by
the researcher.




The advantages of temporally-average estimands for each outcome unit

m We are more familiar with estimands in cross-sectional studies that
average across units

m Measuring and adjusting for temporal covariate information might be
easier and lower-dimensional than unit covariate information

m Number of units might be small (or even 1)

m Estimand informs us of effect heterogeneity across units, which can be
policy-relevant



The impact of wildfire smoke exposure on bikeshare hours

m 1,003 days, with ~ 140 exposed ones

m Balance on daily temperature, humidity, precipitation, wind speed, and
wind direction as potential time-varying confounders

m Based on our framework, we conjecture that no additional covariates
are needed for confounding adjustment!

m factors influencing wildfire occurrence and smoke dispersion are unlikely
to impact biking activity in distant locations

m economic indices fluctuating over time that might affect biking activity
are likely unrelated to wildfire occurrence



The impact of wildfire smoke exposure on bikeshare hours

San Francisco East Bay San Jose

Naive-t 0.973  (1.000) 0.110 (1.000) 0.022 (0.810)
Maching 1-1  -0.601 (0.014) 101 -0.043 (0.190) 103 -0.002 (0.235) 100
Matching 1-1/2 -0.521 (0.021) 101 -0.031 (0.265) 103 -0.002 (0.196) 100
Matching 1-2 ~ -0.100  (0.356) 56 -0.001 (0.490) 59 -0.001 (0.279) 59

The columns correspond to estimate, p-value, and number of matched exposed time periods.



Summary

We provide a comprehensive framework for bipartite interference with time
series observational data and a random network

m Define estimands as temporal averages of time-specific effect for each
outcome unit

~ Important advantages over estimands that average across units

m Provide unconfoundedness assumptions on the treatment assignment of
interventional units and the network process to establish the outcome
unit's exposure unconfoundedness

~r tangible, actionable confounding adjustment

m Focusing on binary exposures, we develop three matching estimators

~ guarantee small estimation bias
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