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Challanges

cumulative forest loss 2000-2018
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Deforestation Insurgency Violence Bike Rental Hours
»ad Network Aid [emperature

Carryover: A wildfire today increases bike rentals tomorrow.
Spillover: A wildfire in one county drifts into neighboring counties.
Time-Varying Confounding:  Weather affects wildfires and bike rentals.

Treatment-Covariate Feedback: A Covid lockdown reduces mobility, which in turn affects lockdown necessity.
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Running Example

Wildtire Smoke

l

Hospital Admissions

Time-varying confounders:

. . . variates that both influence and are
Air Quality Policies Covariate

influenced by past treatments and outcomes
(creates feedback loops).
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Running Example

They also have fixed covariates (like elevation) that we ignore for now.
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Running Example
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CAPO

Counterfactual treatment sequence
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CAPO = Conditional Average Potential Outcomes

(w.r.t. history, counterfactual sequence, horizon 7)

Expected number of hospitalizations at time t + 7 if we were to apply a

specific sequence of treatments fromtimetttot+ 17— 1.



Assumptions

Counterfactual treatment sequence
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Assumptions  Where it breaks:
Causal Sufficiency:  Political pressure from activist groups that is not captured.
Temporal Ordering:  Correct the air quality sensor readings retrospectively.

Time-Invariant Dynamics:  Behavior changes after 5 month.



G-Computation (Robins, 1986)
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G-Computation (Robins, 1986)
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MM MM M " MM
Wildfire Smoke M M ™ M M

(Treatment) \ ) )

_Counterfactual treatment sequence

]+ OO o0

Hospital Admissions © olo O O

O
(Outcome) O ©

.

NN-guided
G-Computation

o

©

Air Quality Policies
(Time-Varying Confounder)

(aka Covariate with Feedback)

» Estimate counterfactual outcomes with regression + recursion
» Good understanding of how outcomes depend on covariates and treatments.

» You cannot estimate effects of treatments that never occur in some part of the covariate space.
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City S s

City S’ s’

—> Direct effects

Air pollution today
causes more
hospitalizations
today.

History

Setup

Intervention
(air quality)

—> Temporal carryover

Smoke exposure
yesterday increases
hospitalizations
tomorrow

Outcome
(hospitalization)

— Spatial confounding — Interference

Temperature in Pollution in City S
City S causes air causes

quality changes in hospitalizations
City S in City S’

— — Time-varying confounding

Weather influences
pollution levels and
respiratory health



Observational Data Interventional Data
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Figure 1. Observational data (left) versus interventional data (right) for a horizon 7 = 2 across multiple locations (s, s’). Green arrows

indicate temporal carryover, blue arrows show spatial confounding, and red arrows depict interference; dashed arrows denote time-varying

confounding, and dashed circles represent unobserved variables at inference time. Under the intervention (right), treatments are set
independently of confounders, and the full history is not observed for the entire horizon.



G-Computation (Robins, 1986)
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G-Computation (Robins, 1986)
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G-Computation (Robins, 1986)
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(Makes everything Markovian)

We note that the single time-
series setting frequently arises in causal inference, where
assumptions such as stationarity or strict time homogeneity
enable consistent estimation (Bojinov and Shephard, 2019;
Papadogeorgou et al., 2022; Zhou et al., 2024). In contrast,
our representation-based time invariance is weaker: rather
than requiring X;, Y; themselves to have a time-invariant
distribution, we only assume that, once the history is sum-
marized by ¢(H.;, A;), the transition to (X;41, Y¢+1) fol-
lows a single shared mechanism.



istory Encoding

(Makes everything Markovian)
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Each head Q,
estimates the CAPO:
The expected
nospitalisations on the

final day t + 1.
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Each head Q,
estimates the CAPO:
The expected
nospitalisations on the

final day t + 1.

(), does so under the
assumption that we
know the history up to
timet+k-1.
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Simulation
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Time-varying confounders grow => GST-UNET becomes better than the baselines.
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Figure 3. (Left) Daily PM; 5 levels across California from May to December 2018, with red lines marking major wildfires. (Center)
Counties exposed to average PM, s > 10 ug/m’ during the Camp Fire (red), origin county in dark red. (Right) Factual minus CAPO-
predicted daily respiratory admissions during peak Camp Fire. Hashed areas indicate small-population counties (< 30,000).

Quantify extra respiratory hospitalizations caused by the 2018 Camp Fire smoke across California.

Spatial grid: 10 km x 10 km.

Counterfactual treatment: Set every cell to “no-smoke” for 8 - 17 Nov 2018 (10 days ahead).

Outcome: model attributes = 4 650 excess admissions to the fire-driven pollution.



Summary

Wildfire Smoke

Hospital Admissions

Air Quality Policies
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e How realistic are the assumptions?
e NN-architecture + training unprincipled?
* |sthere a conceptual difference than just learning the transition operator?
e Cab you sample from the counterfactual distribution?
®

Effects of grid size not discussed.




