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Motivation

o Causality in spatio-temporal settings
o the causal effect of an intervention on the assignment of treatment
o Challenges

o Point pattern treatment and outcome
e Spatial spillover
o temporal carryover effect
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Motivation

o Causality in spatio-temporal settings

o the causal effect of an intervention on the assignment of treatment
o Challenges

o Point pattern treatment and outcome

e Spatial spillover

o temporal carryover effect
o Causal framework for definition, identification and estimation of

average treatment effects (P et al., 2022)

@ Questions remain :

e How do different communities respond to the intervention ?

~ (effect heterogeneity)
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Motivation

Causality in spatio-temporal settings
o the causal effect of an intervention on the assignment of treatment

o Challenges
o Point pattern treatment and outcome
e Spatial spillover
o temporal carryover effect
o Causal framework for definition, identification and estimation of

average treatment effects (P et al., 2022)

Questions remain :

e How do different communities respond to the intervention ?
~ (effect heterogeneity)

Defining, identifying and estimating conditional treatment effects
in the spatio-temporal setting
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Our motivating setting

e Data in Iraq for 2007-08

o “Treatment” (or exposure) : Airstrikes

(date, location, weapons type, and aircraft used)

e Outcome : Insurgent attacks

(exact time, location, attack type)
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Our motivating setting

Data in Iraq for 2007-08

“Treatment” (or exposure) : Airstrikes
(date, location, weapons type, and aircraft used)
Outcome : Insurgent attacks

(exact time, location, attack type)

More airstrikes lead to more insurgent violence (P et al., 2022)

Do communities respond different to the increase in airstrikes
based on prior humanitarian aid ?
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Our motivating setting

Data in Iraq for 2007-08

“Treatment” (or exposure) : Airstrikes

(date, location, weapons type, and aircraft used)

Outcome : Insurgent attacks

(exact time, location, attack type)

More airstrikes lead to more insurgent violence (P et al., 2022)

Do communities respond different to the increase in airstrikes
based on prior humanitarian aid ?

Potential effect modifier : US Aid Spending
(district-level aid spending, 104 districts, during month prior to airstrikes)
Hearts-and-minds theory :

o How prior aid modifies the effect of airstrikes on insurgent
violence

Treatment Effect Heterogeneity



2007/03/01

e

Airstrike L

Treatment Effect Heterogeneity



2007/03/01

e

'

Airstrike LN

~ J_{g

f/,?#

B,

Violence L ’&\
. \_,_'fi\

.

Treatment Effect Heterogeneity



2007/03/01

Pt s

Airstrike (k_ g

f/,T

ey

,"/ !
Violence | é\

Prior Aid

01234567

Treatment Effect Heterogeneity



2007/03/01 2007/03/02 2007/03/03 2007/06/30
r//'*ﬂ/ T //"—'1/\ //‘—'v
J f P, s P \?
Airstrike Lﬁ\ [ h (L,\ \ e q‘:-‘_ \\
\\\\ JL’\ 'x\\\\k Y 3 \\\ ‘/L \“\\-\_ ‘/r:\
= ’Tb\? o
,Jr i “J‘
Violence ] ..
Prior Aid ..

Treatment Effect Heterogenei



Challenges

e Spatial spillover

e Temporal carryover effect
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Challenges

Spatial spillover

Temporal carryover effect

Point pattern treatment and outcome

Defining, identifying and estimating conditional treatment effects
in this spatio-temporal setting
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Some notation

o (2 : geography of interest

e Treatment and outcome events are spatial point patterns
measured at discrete time periods t € T = {1,2,...,T}
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Some notation

o (2 : geography of interest

e Treatment and outcome events are spatial point patterns
measured at discrete time periods t € T = {1,2,...,T}

o W, : treatment point pattern at time ¢
o realization w
o W, = Wy, Wy,...,W;) treatment pattern until time ¢
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Some notation

o (2 : geography of interest

e Treatment and outcome events are spatial point patterns
measured at discrete time periods t € T = {1,2,...,T}

o W, : treatment point pattern at time ¢

° @hzation Wy
o W, = (Wi, Ws,...,W,) treatment pattern until time ¢

e Yi(wy) : potential outcome at time ¢ under treatment path o,
e No assumptions on the interference structure
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Some notation

o (2 : geography of interest

e Treatment and outcome events are spatial point patterns
measured at discrete time periods t € T = {1,2,...,T}

o W, : treatment point pattern at time ¢

° @hzation Wy
o W, = (Wi, Ws,...,W,) treatment pattern until time ¢

Y:(w;) : potential outcome at time ¢ under treatment path o,
e No assumptions on the interference structure

e X : time-varying variables occurring prior to Wy
e R, C X, : the potential effect modifier
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Estimands under stochastic interventions

e For point pattern treatments, we use stochastic interventions to
represent useful treatment assignments

o I}, represents a hypothetical treatment assignment strategy

(distribution over treatment point patterns)

Oh:Cgf)o

o What would happen if treatment intensity increased ?

e Estimands represent contrasts of outcomes under different
treatment assignments for locations with a specific effect
modifier value
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Estimand

e Expected number of outcome events in pixel S; at time ¢ under
intervention Fj,

Nu(F) = [ N, (¥i(Wios, 1)) dB (wn).
w
o Treatment effect of Fjs versus Fp» for time period ¢ and pixel S; :
Tit (Fpry Fprr) = Nig(Fpr) — Ni(Fpr)

e The conditional average treatment effect (CATE) when the
moderator takes a specific value r € R at time ¢ :

1 P
Te.h W (T) = TiF/,F//IRi:’I‘
v (T) f_lf(Ritzr); t(Fprs Fno ) I (Rip = 1)
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Estimand

e Projection estimand : h, h” (r BF) with

IBt - argﬁmlnz Tt,h! h”(th) - th/ h”( it;ﬁt))2a
t =1

@ Overall CATE :
* P *
T}E)/r](;// (’l“; B - - 7BT }i/oh// T; B, )

o Extend for interventions over multiple time periods
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Figure — An illustration of the moderator (top row) over four pixels
and four time periods, along with the treatment (middle row) and
outcome (bottom row) events with a stochastic intervention

Fy, = Fy, X Fp, over the last two time periods.
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Causal Assumptions

Assumption (Unconfoundedness)

TWe | W, Y1, Xr) = f(We | Hi)

Assumption (Bounded relative overlap)

There exists Sy > 0 such that e (w) > dw fr(w) for allw e W

where ey(w) = fWy =w | Hy_1)

where H; is the observed history up to and including time ¢
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Estimation procedure

Step 1 : Create the pseudo outcomes

e Pseudo outcome (IPW weights) for intervention Fj, :

}71 Fo- &) = M Neo (Y,
zt( hﬂFY) j:tl_]\[4+l ej(erAY) S,( t)

~ }Zf (Fr;4) : use stabilized IPW weights
~~ for Fp versus Fyr : Y (Fp;4) — Y (Fpis 4)
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Estimation procedure

Step 1 : Create the pseudo outcomes

e Pseudo outcome (IPW weights) for intervention Fj, :

~ R W

YitFnid) = ] ef?v(vj)) Ns, (Y1)
j=t-m1 GG\

~ }Zf (Fr;4) : use stabilized IPW weights

~~ for Fp versus Fyr : Y (Fp;4) — Y (Fpis 4)

Step 2 : Regress pseudo outcomes on the effect modifier

e Fit the regression model for each time period and then average
the results over all time periods.

o Consider linear models with spline basis functions of the effect
modifier.
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Asymptotic distributions of the estimator

Theorem (Asymptotic Normality of the Hajek Estimator Using
the Estimated Propensity Score)

Suppose that unconfoundedness and overlap assumptions hold,

along with regularity conditions. Then as T — oo, we have that

LS B AN,
T—M+1 Lo ’

t=M

e Combining theory on inverse weighting, estimated propensity
scores, martingale difference series
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Asymptotic distributions of the estimator

Theorem (Asymptotic Normality of the Hajek Estimator Using
the Estimated Propensity Score)

Suppose that unconfoundedness and overlap assumptions hold,
along with regularity conditions. Then as T — oo, we have that

1 T

AH g d,
m tg(lat /Bt) — N(O7 V)

e Combining theory on inverse weighting, estimated propensity
scores, martingale difference series

e Cannot consistently estimate the asymptotic variance due to the
fact that we only observe a single time series
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Asymptotic distributions of the estimator

Theorem (Asymptotic Normality of the Hajek Estimator Using
the Estimated Propensity Score)

Suppose that unconfoundedness and overlap assumptions hold,
along with regularity conditions. Then as T — oo, we have that

T

S (B -85 N(0,V).

t=M

1

VI—-—M+1

e Combining theory on inverse weighting, estimated propensity
scores, martingale difference series

e Cannot consistently estimate the asymptotic variance due to the
fact that we only observe a single time series

e Asymptotic efficiency under the estimated propensity score
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Empirical Analysis

Treatment effect heterogeneity for the effect of airstrikes on
insurgent violence in Iraq, during the time period February 23,
2007 to July 05, 2008

Outcome events : Improvised Explosive Device (IED) and Small
Arms Fire (SAF) insurgent attacks

Effect modifier : Aid per capita during the previous month

Conditional average treatment effect of increasing the expected
number of airstrikes from one per day to six per day

Fh/ V.S. Fh//, where h/ = 1¢0 and h" = 6(;50.
~ ¢ is estimated based on historic data

Working model :

4
Tt,h’,h"(T; /875) = 515,0 + Z 6t,lzl(7") + Bt,5l{7' = 0}’
=1
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Figure — The estimated CATE for given value of aid per capita in the
previous month with the shaded region indicating the 95% confidence
intervals.
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Summary

@ We propose a method for studying the treatment heterogeneity
in the spatio-temporal setting

e Point pattern treatment and outcome
e Spatial or spatio-temporal moderator

e Two step estimation procedure

o No assumption on temporal carryover and spatial spillover effects
o Utilize stablized IPW weights

e Empirical study
e Examining how prior humanitarian aid influences the impact of
airstrikes on insurgent violence.

e Publicly available software & data, and corresponding software
manuscript (Mukaigawara et al., 2024b,a)
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Thank You!

Questions ? Comments ?
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